Research on Energy Consumption of Regional Distributed Heat Pump Energy Bus System

2011 ◽  
Vol 374-377 ◽  
pp. 425-429 ◽  
Author(s):  
Pei Pei Wang ◽  
Wei Ding Long

China's rapid urbanization makes low-carbon become the pursuit of sustainable development society. In this paper, a new district cooling and heating system named regional distributed heat pump energy bus system is introduced, which can make large scale integration of renewable energy sources or untapped energy sources be used for air-conditioning. This article briefly describes the system concept, applicability, design principles, analysis of the system topological structure and outdoor pipe network heat and pressure loss. Ultimately analyze energy bus system energy consumption compared with DHC system and water supply system by examples.

2021 ◽  
Author(s):  
Lubna Al-Tameemi

Whole building optimization retrofits have been performed for two townhouses in four locations with different climates to find both energy efficiency and cost-effective retrofit solutions across a thirty-year time span analysis. The objective is to find deep energy retrofit packages that can be used for large scale social housing retrofit. The multi-objective optimizations aim to achieve the least annualized related costs, lower initial and operational energy related costs and substantial carbon savings by analyzing one natural gas heated option and four electric heated options (baseboard heating system, central air-source heat pump, ductless mini-split heat pump and ground-source heat pump). Results reveal that prescriptive deep energy retrofit solutions achieved between 78% to 100% site energy reductions through building enclosures improvement, upgrades of HVAC and water heating systems, upgrades of appliances and lighting, and the addition of onsite renewable energy generation. Results also indicate that ductless mini-split heat pump (MSHP) optimized model has lower long-term costs and a shorter modified payback period than the optimized gas-heated model at all locations; thus suggesting that heating electrification is cost effective and can reduce the majority of operational GHG emissions of existing housing stock in locations with low carbon intensity electric grid. (834KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Calc_Lubna/view (284KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnAl_Lubna/view (4 MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnHr_Lubna/view (5MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Wind_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Toro_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Thby_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Otta_Lubna/view


2013 ◽  
Vol 361-363 ◽  
pp. 382-385
Author(s):  
Marek Kušnír ◽  
Danica Košičanová ◽  
František Vranay

Nowadays, choosing of heating source is emphasized. On the market there are different types of heat sources, which need to be properly designed to the required heating output. Finally, it is necessary to take into account the possibilities of fuel burning as well as heat transfer substance. Heating system is dependent on regional weather conditions, where the building is located. All these factors ultimately, with proper design of the heat source, could reduce operating costs in the heating season. Currently in the design of the heating system, there are taken into account the greatest possible energy savings. It is therefore to encourage bigger utilization of renewable energy sources.Currently has the highest proportion of total energy consumption in the buildings, energy for heating. For this reason, the expert and research community seeks to reduce energy consumption at the lowest possible value. For this purpose, people are starting to apply renewable energy sources. These devices using renewable energy sources convert energy from the environment. Most of them are transforming energy from the sun, earth, water and air. This energy is then used directly for heating. In this article we will more closely deal with transforming solar energy into electricity using photovoltaic panels and we will focus on the interaction between the photovoltaic system and heating and cooling system, under certain conditions. Produced electric energy is used for heating system in the school building in Spišská Nová Ves in Slovakia.


2021 ◽  
Author(s):  
Lubna Al-Tameemi

Whole building optimization retrofits have been performed for two townhouses in four locations with different climates to find both energy efficiency and cost-effective retrofit solutions across a thirty-year time span analysis. The objective is to find deep energy retrofit packages that can be used for large scale social housing retrofit. The multi-objective optimizations aim to achieve the least annualized related costs, lower initial and operational energy related costs and substantial carbon savings by analyzing one natural gas heated option and four electric heated options (baseboard heating system, central air-source heat pump, ductless mini-split heat pump and ground-source heat pump). Results reveal that prescriptive deep energy retrofit solutions achieved between 78% to 100% site energy reductions through building enclosures improvement, upgrades of HVAC and water heating systems, upgrades of appliances and lighting, and the addition of onsite renewable energy generation. Results also indicate that ductless mini-split heat pump (MSHP) optimized model has lower long-term costs and a shorter modified payback period than the optimized gas-heated model at all locations; thus suggesting that heating electrification is cost effective and can reduce the majority of operational GHG emissions of existing housing stock in locations with low carbon intensity electric grid. (834KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Calc_Lubna/view (284KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnAl_Lubna/view (4 MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnHr_Lubna/view (5MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Wind_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Toro_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Thby_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Otta_Lubna/view


2013 ◽  
Vol 438-439 ◽  
pp. 1998-2001
Author(s):  
Zhi Hui Bian ◽  
Tie Cheng Wang ◽  
Shi Yong Zhao ◽  
Xian Fa Guo

Ground source heat pump technology is a new type technology of superficially geothermal utilization. By taking Chinese-Canadian cooperation in the energy-saving low-carbon environmental demonstration housing project for example, this paper is to introduce the low-ground heat used in the timber structure. Through analysis of the energy consumption on the integration technology for wooden structure and ground source heat pump, and compared with conventional energy on energy consumption, validated applying renewable energy sources on modern wooden structure will produce significant benefits on economic and environmental, which possesses significant role in promoting that creating a resource-saving and environment-friendly society.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Janusz Grabara ◽  
Arsen Tleppayev ◽  
Malika Dabylova ◽  
Leonardus W. W. Mihardjo ◽  
Zdzisława Dacko-Pikiewicz

In this contemporary era, environmental problems spread at different levels in all countries of the world. Economic growth does not just depend on prioritizing the environment or improving the environmental situation. If the foreign direct investment is directed to the polluting industries, they will increase pollution and damage the environment. The purpose of the study is to consider the relationship between foreign direct investment in Kazakhstan and Uzbekistan and economic growth and renewable energy consumption. The study is based on data obtained from 1992 to 2018. The results show that there is a two-way link between foreign direct investment and renewable energy consumption in the considered two countries. The Granger causality test approach is applied to explore the causal relationship between the variables. The Johansen co-integration test approach is also employed to test for a relationship. The empirical results verify the existence of co-integration between the series. The main factors influencing renewable energy are economic growth and electricity consumption. To reduce dependence on fuel-based energy sources, Kazakhstan and Uzbekistan need to attract energy to renewable energy sources and implement energy efficiency based on rapid progress. This is because renewable energy sources play the role of an engine that stimulates the production process in the economy for all countries.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3680
Author(s):  
Lasantha Meegahapola ◽  
Siqi Bu

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1570
Author(s):  
Tomasz Rokicki ◽  
Aleksandra Perkowska ◽  
Bogdan Klepacki ◽  
Piotr Bórawski ◽  
Aneta Bełdycka-Bórawska ◽  
...  

The paper’s main purpose was to identify and present the current situation and changes in energy consumption in agriculture in the European Union (EU) countries. The specific objectives were the determination of the degree of concentration of energy consumption in agriculture in the EU countries, showing the directions of their changes, types of energy used, and changes in this respect, establishing the correlation between energy consumption and changes in the economic and agricultural situation in the EU countries. All member states of the European Union were deliberately selected for research on 31 December 2018 (28 countries). The research period covered the years 2005–2018. The sources of materials were the literature on the subject, and data from Eurostat. Descriptive, tabular, and graphical methods were used to analyze and present materials, dynamics indicators with a stable base, Gini concentration coefficient, concentration analysis using the Lorenz curve, coefficient of variation, Kendall’s tau correlation coefficient, and Spearman’s rank correlation coefficient. A high concentration of energy consumption in agriculture was found in several EU countries, the largest in countries with the largest agricultural sector, i.e., France and Poland. There were practically no changes in the concentration level. Only in the case of renewable energy, a gradual decrease in concentration was visible. More and more countries developed technologies that allow the use of this type of energy. However, the EU countries differed in terms of the structure of the energy sources used. The majority of the basis was liquid fuels, while stable and gaseous fuels were abandoned in favor of electricity and renewable sources—according to which, in the EU countries, the research hypothesis was confirmed: a gradual diversification of energy sources used in agriculture, with a systematic increase in the importance of renewable energy sources. The second research hypothesis was also confirmed, according to which the increase in the consumption of renewable energy in agriculture is closely related to the economy’s parameters. The use of renewable energy is necessary and results from concern for the natural environment. Therefore, economic factors may have a smaller impact.


Sign in / Sign up

Export Citation Format

Share Document