Simple Formulate for Distortional Buckling Load of Liffed Channel Aluminium Alloy Members under Axial Force

2011 ◽  
Vol 378-379 ◽  
pp. 230-236
Author(s):  
Li Zhong Jiang ◽  
Wang Bao Zhou ◽  
Yao Luo

Aluminium alloy members under axial force have broad application in structural field. Owing to low elastic modulus, aluminium alloy members are easier buckling than steel members. Based on the reasonable and equivalent calculation model and the related calculation formulas of rotational restraint stiffness kφ, lateral restraint stiffness kx, and distortional buckling critical half-wave length λ that provided by lipped channel web plate to flange under longitudinal distribution stress, the distortional buckling load calculation formula of the lipped channel is derived combining the thin-walled bar buckling theory in elastic medium. The distortional buckling loads and distortional buckling critical half-wave lengths at the different wall thickness have been calculated using the calculation formulas of this paper, and the results have been comparatived with the finite strip method. The comparison results show that: the average ratio of caculation results from formulas of this paper and results from CUFSM is 0.997and0.971 respectively,the corresponding variance is 2.9*10-5and 7.5*10-5. So the calculation results of this paper is in good agreement with the finite strip software, the calculation formula of this paper has enough calculation precision and good stability. At the same time, the calculation results of this paper is more concise than calculation formula for the same type, easy to be applied, may be used in practical applications and taken account into design codes and guidelines.

2017 ◽  
Vol 896 ◽  
pp. 175-181
Author(s):  
Miao Liu ◽  
Peng Zhai ◽  
Qiang Long ◽  
Chun Yang Wang ◽  
Bo Han Xiao

Severe regassing was detected by previous experiment on degassing method for aluminium-silicon alloy by injecting argon with rotation. In order to further degas, ultrasonic degassing was adopted. To describe the cavitation bubbles’ movement, traditional Rayleigh-Plesset equation was modified. Classic Rayleigh-Plesset equation is strongly restricted by the applicable condition that the centre of the bubble is fixed. In this paper, a position-related Rayleigh-Plesset equation is proposed to describe the cavitation bubble's floating movement in aluminium-silicon alloy of 750°C with the coefficient of viscosity of 0.0012. As the calculation results, a bubble stimulated by high-low-frequency vibration can float up faster with violent vibration.


2016 ◽  
Vol 40 (4) ◽  
pp. 585-596
Author(s):  
Zhenhuan Ye ◽  
Zhansheng Liu ◽  
Liqin Wang

Based on a loading-deformation relationship of bearing elements and the coordination of displacement between bearings in the rotor system, a model for calculating the additional axial force of angular-contact ball bearings in a single-rotor system is established. Nonlinear equations of this model are solved through the Rapid Descent method and Newton-Raphson method. The simulation results which are based on Gupta’s example verify that both the model and solving methods in this paper are reliable. A pair of 276927NK1W1(H) angular-contact ball bearings in symmetry in the single-rotor system is used as the example, calculation results of the additional axial force of bearings from the model in this paper and from the ISO method are compared and the influence of bearing geometry parameters and working conditions on the additional axial force is further studied. This model and its conclusions could provide the basic data and reference for analyzing the carrying ability and dynamic properties of rolling bearings.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3894-3905
Author(s):  
Zhaoyu Xu ◽  
Genshu Tong ◽  
Lei Zhang ◽  
Yong Guo

2018 ◽  
Vol 877 ◽  
pp. 20-25
Author(s):  
P.K. Mandal

The cast Al-Zn-Mg 7000 alloy has become one of the most potential structural materials in many engineering fields such as aircraft body, automotive casting due to their high strength to weight ratio, strong age hardening ability, competitive weight savings, attractive mechanical properties and improvement of thermal properties. The cast aluminium alloy has been modified of surface layer through a solid-state technique is called friction stir process (FSP). But basic principle has been followed by friction stir welding (FSW). This process can be used to locally refine microstructures and eliminate casting defects in selected locations, where mechanical properties improvements can enhance component performance and service life. However, some specified process parameters have adopted during experimental works. Those parameters are tool rotation speed (720 rpm), plate traverse speed (80 mm/min), axial force (15 kN), and tool design (i.e., pin height 3.5 mm and pin diameter 3.0 mm), respectively. The main mechanism behind this process likely to axial force and frictional force acting between the tool shoulder and workpiece results in intense heat generation and plastically soften the process material. The specified ratio of rotational speed (720 rpm) to traverse speed (80 mm/min) is considered 9 as low heat input during FSP and its entails low Zn vaporization problem results as higher fracture toughness of aluminium alloy. It is well known that the stirred zone (SZ) consists of refine equiaxed grains produced due to dynamic recrystallization. FSP has been proven to innovatively enhancing of various properties such as formability, hardness and fracture toughness (32.60 MPa√m). The hardness and fracture toughness of double passes AC+FSP aluminium alloy had been investigated by performing Vicker’s hardness measurement and fracture toughness (KIC)(ASTM E-399 standard) tests. Detailed observations with optical microscopy, Vicker’s hardness measurement, SEM, TEM, and DTA analysis have conducted to analyse microstructure and fracture surfaces of double passes FSP aluminium alloy.


2013 ◽  
Vol 790 ◽  
pp. 638-642
Author(s):  
Hong Zhi Qiu ◽  
Ji Ming Kong ◽  
Yin Zhang

Using ABAQUS software analyzed the dynamic response of foundation pit supporting structure under vehicle loads. The vehicle load was simplified as a half-wave sinusoidal load, in order to analyze the influence of internal force and displacement of pile-anchor supporting structure under the vehicle loads, the position of half-wave sinusoidal load and the size of radian frequency were considered. Loading location away from the supporting structure is more nearly and the displacement value of support piles is greater, the greater the axial force of the bolt; with the increasing of radian frequency, the horizontal displacement value of supporting piles increased, on the contrary, the axial force of bolt reduced. A practical engineering was studied here. analysis of the monitoring data and compared with the numerical results, the analysis showed that the experimental results and numerical results are in good agreement, and the numerical method can be used as an effective means of research. The conclusion of the study has significance on engineering practice.


Mechanika ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 12-21
Author(s):  
Chuanbo XU ◽  
Maoru CHI ◽  
Liangcheng DAI ◽  
Yiping JIANG ◽  
Yongfa CHEN ◽  
...  

The research on the mechanical model of rubber spring is one of the hot spots in train dynamics. In order to accurately calculate the viscoelastic force of the rubber spring, especially the non-hyperelastic forces (NHEF) part, a NHEF model is proposed based on the elliptic approximation method. Furthermore, the calculation formula of periodic energy consumption is put forward. The NHEF model is verified by experiments, and the function λ isconstructed to verify the formula of periodic energy consumption. The calculation results showed that the NHEF model had high accuracy in predicting the dynamic and quasi-static NHEF of rubber spring, the prediction accuracy of shear condition was better than that of compression condition, and the accuracy of quasi-static condition was better than that of dynamic condition; the calculation formula of periodic energy consumption had a good prediction accuracy in all working conditions.


Author(s):  
Bui Hung Cuong

This article presents a semi-analytical finite strip method based on Marguerre’s shallow shell theory and Kirchhoff’s assumption. The formulated finite strip is used to study the buckling behavior of thin-walled circular hollow sections (CHS) subjected to uniform bending. The shallow finite strip program of the present study is compared to the plate strip implemented in CUFSM4.05 program for demonstrating the accuracy and better convergence of the former. By varying the length of the CHS, the signature curve relating buckling stresses to half-wave lengths is established. The minimum local buckling point with critical stress and corresponding critical length can be found from the curve. Parametric studies are performed to propose approximative expressions for calculating the local critical stress and local critical length of steel and aluminum CHS.


Sign in / Sign up

Export Citation Format

Share Document