Efficient and Stable Photocatalytic Activity of CeVO4/TiO2 Nanocrystalline Heterojunction under Visible Light Irradiation

2011 ◽  
Vol 383-390 ◽  
pp. 3183-3187 ◽  
Author(s):  
Han Jie Huang ◽  
Wen Long She ◽  
Hai Peng Huang

A visible-light-driven CeVO4/TiO2 photocatalyst with nanostructured heterojunction has been successfully prepared by a simple coupled method. The catalyst was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and spin-trapping electron paramagnetic resonance (EPR). The visible light-induced photocatalytic activities were evaluated by decomposing benzene in gas phase. The result showed that the prepared catalyst exhibited efficient photocatalytic activities with high photochemical stability under visible light irradiation.

NANO ◽  
2017 ◽  
Vol 12 (05) ◽  
pp. 1750059 ◽  
Author(s):  
Zhiyuan Yang ◽  
Junjie Wang ◽  
Lu Chen ◽  
Mengjun Liang ◽  
Yulin Xu ◽  
...  

In this work, we developed a simple hydrothermal method toward the fabrication of TiO2/Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] heterostructure, which had superior photocatalytic performance for degrading of RhB under visible light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The optimal composite with 15[Formula: see text]wt.% TiO2/Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] (TBMO3) exhibits a much higher photocatalytic activity than that of Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] and P25 by degradation of RhB under visible light irradiation within 20[Formula: see text]min. The enhanced performance of TBMO3 is predominantly attributed to the synergistic effect both in the higher surface area and the improved separation of photogenerated charge carriers between the two semiconductors. Recycling experiments indicated that TiO2/Bi[Formula: see text]Mo[Formula: see text]O[Formula: see text] photocatalysts had excellent cycle performance and stability. The photocatalytic mechanism of nanocomposite photocatalysts was proposed, which is confirmed by the active species trapping experiments and photoluminescence tests.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xianlu Cui ◽  
Yaogang Li ◽  
Qinghong Zhang ◽  
Hongzhi Wang

Flaky layered double hydroxide (FLDH) was prepared by the reconstruction of its oxide in alkali solution. The composites with FLDH/Ag3PO4mass ratios at 1.6 : 1 and 3 : 1 were fabricated by the coprecipitation method. The powders were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope, and UV-vis diffuse reflectance spectroscopy. The results indicated that the well-distributed Ag3PO4in a fine crystallite size was formed on the surface of FLDH. The photocatalytic activities of the Ag3PO4immobilized on FLDH were significantly enhanced for the degradation of acid red G under visible light irradiation compared to bare Ag3PO4. The composite with the FLDH/Ag3PO4mass ratio of 3 : 1 showed a higher photocatalytic efficiency.


RSC Advances ◽  
2014 ◽  
Vol 4 (88) ◽  
pp. 47615-47624 ◽  
Author(s):  
Ping Li ◽  
Chunbo Liu ◽  
Guoling Wu ◽  
Yang Heng ◽  
Shuang Lin ◽  
...  

In this paper, Fe-doped SrTiO3 (FSTO) photocatalysts were successfully prepared via a facile solvothermal method, and their photocatalytic activities for degrading tetracycline (TC) under visible light irradiation were examined.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


2019 ◽  
Vol 12 (06) ◽  
pp. 1950085 ◽  
Author(s):  
Di Zhao ◽  
Xuezheng An ◽  
Yaxian Sun ◽  
Guihua Li ◽  
Hongyan Liu ◽  
...  

p-n heterojunction Ag2CO3/Ag3PO4/Ni thin films were prepared by electrochemical co-deposition. The surface morphology and structural properties of the thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photocatalytic (PC) properties of the Ag2CO3/Ag3PO4/Ni composite thin films were investigated by their ability to degrade rhodamine B (RhB) and Congo red (CR) under visible light irradiation. The results showed that the photodegradation efficiency of RhB by an Ag2CO3/Ag3PO4/Ni thin film under visible-light irradiation for 30[Formula: see text]min (98.84%) was 2.64 times higher than that of an Ag3PO4/Ni thin film and 3.44 times higher than of an Ag2CO3/Ni thin film. The presence of a [Formula: see text]-[Formula: see text] heterojunction greatly increased the charge conductivity of the film and its ability to photocatalytically reduce dissolved oxygen, which are the main reasons for the improved PC performance of the Ag2CO3/Ag3PO4/Ni films.


2002 ◽  
Vol 17 (9) ◽  
pp. 2201-2204 ◽  
Author(s):  
J. Yin ◽  
Z. Zou ◽  
J. Ye

Barium indium oxides (BaIn2O4, Ba4In6O13, Ba2In2O5, Ba3In2O6, and Ba5In2O8) were synthesized by the citric process and characterized by powder x-ray diffraction. The optical absorption properties of these compounds were investigated by UV–visible diffuse reflectance spectroscopy. It was found that with the increase of the mole ratio of In2O3 in the formula the optical absorption edges of these oxides shift to the longer wavelength side monotonically. The photocatalytic H2 and O2 evolutions under visible light irradiation (λ > 420 nm) from aqueous CH3OH/H2O and AgNO3/H2O solutions were performed. Among these oxides, BaIn2O4 was the most stable compound, and other compounds were not stable chemically in the case of water and visible light irradiation.


2014 ◽  
Vol 955-959 ◽  
pp. 2267-2275 ◽  
Author(s):  
Rong Liu ◽  
Shi Duo Zhao ◽  
Xue Lin

Ba0.6Mg0.4TiO3 (BMT) particles with different morphologies were synthesized through hydrothermal method and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns demonstrate that the as-prepared samples are tetragonal structure. FESEM shows that BMT crystals can be fabricated in different morphologies by simply manipulating the reaction parameters of hydrothermal process. The UV-visible diffuse reflectance spectra (UV-vis DRS) reveal that the band gaps of BMT photocatalysts are about 2.37 - 2.51 eV. The as-prepared BMT photocatalysts exhibite higher photocatalytic activities in the degradation of methyl orange (MO) under visible light irradiation (λ > 420 nm) compared with traditional N-doped TiO2 (N-TiO2) and pure BaTiO3 (BTO). The high photocatalytic performance of BMT photocatalysts could be attributed to the recombination restraint of the e-/h+ pairs resulting from doping of Mg2+ ions. The influence of morphologies upon the photocatalytic properties of BMT was studied. Furthermore, BMT nanowires reveal the highest photocatalytic activity. Up to 94.0% MO is decolorized after visible light irradiation for 360 min.


2021 ◽  
Vol 11 (1) ◽  
pp. xx-xx
Author(s):  
Nga Phan To ◽  
Lien Nguyen Hong ◽  
Tuyen Le Van ◽  
Nhan Phan Chi ◽  
Huyen Phan Thanh

Porous LaFeO3 were synthesised by nanocasting method using mesoporous silica (SBA-15) as a hard template and used as a visible-light-driven photocatalyst. The as-synthesised LaFeO3 photocatalyst were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD), N2 adsorption-desorption, and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-vis DRS). The photo-Fenton catalytic activities of porous LaFeO3 were investigated for the degradation of oily-containing wastewater. The results showed that porous LaFeO3 had better photo-Fenton catalytic activity under visilbe light irradiation than pure LaFeO3. The remarkable improvement photo-Fenton catalytic activity of porous LaFeO3 material could be attributed to the synergistic effect of adsorption and visible light photo-Fenton processes thanks to its porous structure.


NANO ◽  
2021 ◽  
Author(s):  
Xiaobing Wang ◽  
Chen Feng ◽  
Chenyang Zhu ◽  
Ying Gao

Three-dimensional graphene network (3DGN) and UiO-66 co-modified composite photocatalysts are prepared to decompose dye in solution. The roles of UiO-66 and 3DGN are studied based on the adsorption capacity, visible-light activity, lifetime of photo-induce electrons and electron paramagnetic resonance curves. The rates of degradation of Rhodamine-B are [Formula: see text][Formula: see text]min[Formula: see text] and [Formula: see text][Formula: see text]min[Formula: see text] under UV- and visible-light irradiation. The major function of UiO-66 is increasing the Brunner–Emmet–Teller surface area and adsorption capacity significantly, while the effect of 3DGN is playing as an electron tank and sensitizer. Moreover, the influence of mass fraction of UiO-66 on the resulting photocatalytic performances is revealed (5[Formula: see text]wt.% is found the optimized value), and the synergy is also discussed. Finally, the photocatalytic mechanisms of the resulting photocatalysts both under the UV- and visible-light irradiation are proposed.


2009 ◽  
Vol 79-82 ◽  
pp. 2115-2118
Author(s):  
Xian Hua Zhang ◽  
Lei Ge

The novel visible-light-driven Ag/BiVO4 composite photocatalysts were successfully prepared by photo-deposition method. The as-prepared Ag/BiVO4 samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of the Ag/BiVO4 powders were determined by degradation of methyl orange molecules in water under visible light irradiation (λ>400nm). The photocatalytic experiments indicated that the composite samples enhanced photo-activity under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document