Preparation and Properties of Carbon Nanotube / Polyaniline Nanocomposites

2011 ◽  
Vol 391-392 ◽  
pp. 13-17
Author(s):  
Dong Yu Zhao ◽  
Zheng Jin ◽  
Xue Qin Yang ◽  
Xiao Ying Jia

Aniline monomer coated on the nanotubes in HCl solution was used to prepare a composite of multi-wall carbon nanotube/polyaniline (MWCNT/PANI) by in-situ polymerization. Multi-wall carbon nanotubes were treated by the mixed acid (HNO3:H2SO4in a ratio of 1:3). The content of MWCNT in the samples was 0-20 wt%. The nanocomposites were characterized by Thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy and scanning electron microscopy. The mechanical properties of the MWCNT/PANI nanocomposites were also measured. The results showed that the MWCNT was well dispersed in water after purification. Both FT-IR and Raman spectra illustrated the presence of MWCNT in the composites; the interaction between PANI and MWCNT was proved. The Young΄s modulus was 618MPa with 20wt% loading. The effects of treatment of MWCNT on the mechanical properties of MWCNT/PANI nanocomposites are discussed.

e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Martino Colonna ◽  
Corrado Berti ◽  
Enrico Binassi ◽  
Maurizio Fiorini ◽  
Francesco Acquasanta ◽  
...  

AbstractMulti-wall carbon nanotubes/poly(butylene terephthalate) nanocomposites have been prepared by in-situ polymerization. Benzimidazolium tetrafluoroborate salts improve the dispersion of carbon nanotubes in the polymer matrix due to the formation of “π-cation” interactions of the imidazolium salt with the surface of the carbon nanotubes. An improved dispersion of the nanotubes in butanediol was also observed using the benzimidazolium salt. The presence of the compatibilization agent gives rise to improved thermo-mechanical properties and electrical conductivity for the nanocomposite. The presence of the nanotubes also consistently increases the thermal stability and enhances the nucleation process on PBT crystallization.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Mohammad Rezaul Karim

Poly(3-hexylthiophene) and modified (functionalized and silanized) multiwall carbon nanotube (MWNT) nanocomposites have been prepared through in situ polymerization process in chloroform medium with FeCl3oxidant at room temperature. The composites are characterized through Fourier transfer infrared spectroscopy (FT-IR), Raman, and X-ray diffraction (XRD) measurements to probe the nature of interaction between the moieties. Optical properties of the composites are measured from ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Conductivity of the composites is followed by four probe techniques to understand the conduction mechanism. The change (if any) in C=C symmetric and antisymmetric stretching frequencies in FT-IR, the shift in G band frequencies in Raman, any alterations inλmaxof UV-Vis, and PL spectroscopic measurements are monitored with modified MWNT loading in the polymer matrix.


Author(s):  
Ming-Wen Wang

Successful structural reinforcement of polymer matrices by carbon nanotube has been shown where significant improvement of mechanical properties was achieved at very low carbon nanotube loading. Due to the mechanical properties of aligned composites is better than random has been demonstrated; the conception is not easy to perform in carbon nanotube polymer composites via conventional techniques. Here, we report a novel operation to actively align and network multi-wall carbon nanotubes (MWCNTs) in a polymer matrix. In this process, MWCNTs were aligned via AC electric field induced dipolar interactions among the nanotubes in a viscous matrix followed by immobilization by curing polymerization under continued application of the anisotropic electric field. In situ SEM verified the electrostatic stabilization of the MWCNTs in the dispersion and the orientation and agglomeration caused by the dielectrophoretic force. Alignment of MWCNTs was controlled as a function of magnitude, frequency, and application time of the applied dielectrophoresis. In the present work, MWCNTs are not only aligned along the field, but also migrate laterally to form thick. The actively aligned MWCNTs amplify the flexural modulus and wear-resisting property.


2015 ◽  
Vol 651-653 ◽  
pp. 405-408
Author(s):  
Min Chang Sung ◽  
Geun Sung Lee ◽  
Seung Yong Lee ◽  
Seong Ik Jeon ◽  
Cheol Hee Ahn ◽  
...  

Carbon fiber reinforced composites (CFRCs) have been used in various high-end industries due to their outstanding specific mechanical properties. Recently, carbon nanotube (CNT)-grafted carbon fibers (CFs) made via direct growth has emerged as an advanced and hierarchical reinforcement that can improve the reinforcing effect of CFs in CFRCs. On the other hand, CF reinforced thermoplastic composites (CFRTPs) have attracted much attention because of their quick and mass production capability, e.g., which is important for automotive part manufacturing. Here, we report on the manufacture of CFRTPs using CNT-grafted CFs and their mechanical properties. First, the interfacial shear strength of CNT-grafted CFs with thermoplastic resins was characterized to demonstrate improved interfacial properties due to the CNTs grafted on CFs. Then, the composites were manufactured in two ways; polymer nanoparticles and in-situ polymerization. Polymer nanoparticles were used to improve the interfacial properties due to their small size and good mechanical locking with CF surfaces. In-situ polymerization was also used to manufacture CFRTPs, i.e., monomers with catalyst were transferred into CNT-grafted CF fabric preform using vacuum assisted resin transfer molding and then polymerized into solid matrix. This in-situ polymerization enabled the manufacture of CNT-grafted CF thermoplastic composites by overcoming the difficulties of filling the surface of CNT-grafted CFs with thermoplastic polymers. Finally, the mechanical, thermal, electrical, and damping properties of CNT-grafted CF thermoplastic composites were characterized and compared with their thermoset composites.


2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2013 ◽  
Vol 750-752 ◽  
pp. 7-10
Author(s):  
Kou An Hao ◽  
Zhen Qing Wang ◽  
Li Min Zhou

Fiber impregnation has been the main obstacle for thermoplastic matrix with high viscosity. This problem could be surmounted by adapting low viscous polymeric precursors Woven basalt fabric reinforced poly (butylenes terephthalate) composites were produced via in-situ polymerization at T=210°C. Before polymerization, catalyst was introduced to the reinforcement surface with different concentration. DSC is used to determine the polymerization and crystallization. SEM is used to detect whether the catalyst existed on surface. Both flexural and short-beam shear test are employed to study the corresponding mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document