Operating Conditions and Kinetics of Wastewater Treatment in a Three-Phase Biological Fluidized Bed Reactor

2011 ◽  
Vol 396-398 ◽  
pp. 1989-1994
Author(s):  
Kun Hu ◽  
Zhen Zhong Li ◽  
Yong Guo ◽  
Wei Xing Huang

Systematic experiments were carried out with synthetic wastewater in order to investigate the operating conditions and kinetics of wastewater treatment in a three-phase biological fluidized bed reactor. It is found that with the COD loading rate changed stepwise from 3.5 to 11.2 kg COD/m3•d, the reactor can rapidly restore from each impact of COD load and maintain the removal rate for COD at 85% or above, presenting a high flexibility for the variation of organic loading rate (OLR) in the influent. While the operating OLR keeps constant, the increase of influent COD and NH3-N concentrations will be followed by the correspondingly increased removal rates, so that the COD and NH3-N concentrations in the effluent keep nearly constant. The batched experiments under different air supply conditions show that there exists an optimal air flow rate at which the most effective treatment can be achieved. Finally, a kinetics model of the continuous treatment process was derived based on mass balance and Monod equations, and the kinetic constants were determined by the experimental data at steady operating OLR.

2013 ◽  
Vol 2 (2) ◽  
pp. 131-135
Author(s):  
Z Yavari ◽  
H Izanloo ◽  
K Naddafi ◽  
H.R Tashauoei ◽  
M Khazaei

Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC) is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE) affected by organic loading rate (OLR) and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2381-2384 ◽  
Author(s):  
C. Polprasert ◽  
S. Kessomboon ◽  
W. Kanjanaprapin

Small-scale and pilot-scale experiments were conducted on pig wastewater treatment in water hyacinth (Eichhornia crassipesl ponds. The main objectives were to evaluate the treatment performance of the water hyacinth ponds and to determine suitable operating conditions. From the experimental results obtained, the optimum organic loading rate was found to be 200 kg COD/(ha.d), while the hydraulic retention times were proposed to be 10-20 days. The % COD removal in the small-scale water hyacinth ponds were 74-93, while for the pilot-scale ponds the % COD removal were 52-72 because of fluctuations in the influent wastewater characteristics and occasional insect attacks on the water hyacinth leaves and stems. Similar results were obtained for N removal. Although the water hyacinth ponds were found to be feasible for pig wastewater treatment, at least one polishing pond in series should be provided to polish the water hyacinth pond effluents before discharging into the environment.


1996 ◽  
Vol 23 (6) ◽  
pp. 1305-1315 ◽  
Author(s):  
R. Prakash ◽  
K. J. Kennedy

Start-up and steady state operation of anaerobic fluidized bed reactors (AFBRs) with biolite as the inert carrier material was studied. Start-up and concomitant biofilm development of AFBRs was performed using two common start-up techniques, the maximum efficiency profile (MEP) technique and the maximum load profile (MLP) technique. The MEP start-up technique increases the volumetric organic loading rates to the reactor gradually and is tied to the removal efficiency of the process. The MLP start-up technique maintains a moderately high but constant volumetric organic loading rate irrespective of reactor performance. Using sucrose-based wastewater as feed, both start-up techniques led to equally fast biofilm development and start-up times of approximately 5 weeks. However, the MEP technique resulted in more stable controlled reactor operation during the start-up period. The quick start-up confirms the high compatibility of biolite for bio-adhesion and the development of a healthy active biofilm.High concentrations of biofilm biomass achieved in AFBRs (69 g volatile biofilm solids (VBS)/L of expanded bed volume at an organic loading rate of 25 g COD/(Lùd)) allowed the successful treatment of wastewaters at high organic loading rates and organic removal efficiencies. During steady state experiments, organic removal efficiencies over 80% were obtained for organic loading rates as high as 20 g COD/(L∙d). It was found that the dependence of removal efficiency on hydraulic retention time is influenced by substrate concentration. Total biofilm yield was determined to be 0.08 g VBS/g COD removed, demonstrating the low net synthesis of solids in the AFBR. AFBRs had an average solids retention time of 150 days, corresponding to a washout factor of 0.01. Extrinsic kinetics of the AFBRs was determined to be zero order with a maximum specific utilization rate of 0.48 g COD/(g VBS∙d).AFBRs used to treat municipal landfill leachate with a BOD5:COD ratio of 0.86 achieved steady state COD removal efficiencies that ranged from 70% to 87%, depending on the reactor organic loading rate and the concentration of the leachate being treated. During leachate treatment, biofilm biomass gradually became "mineralized" as a result of precipitation of metal sulfides and carbonates. This eventually resulted in a decrease in biofilm microbial activity and the need for higher pumping rates to maintain the same degree of bed expansion. Key words: anaerobic, biological fluidized bed reactor, biolite, landfill leachate, sucrose, modeling, start-up, steady state kinetics.


Author(s):  
Kun Hu ◽  
Changyi Jin ◽  
Yong Guo ◽  
Weixing Huang

The biodegradation of wastewater from the sugar industry is investigated in a three-phase biological fluidized bed reactor. In the inoculation experiment, the immobilized biofilm was found to keep dominant over the suspended biomass, and a stable biofilm of 175 microns thick was formed after 12 days. The continuous experiments for biodegradation of wastewater showed that, under the operation with hydraulic retention time of 3 h, the average COD and NH3-N removals reached to 85% and 80%, respectively, and the resultant effluent COD and NH3-N achieved the Chinese Discharge Standard of Water Pollutants for Sugar Industry (GB 21909-2008). The experiment for impact load showed that as the influent COD load changed stepwise from 2.3 to 5.1 kgCOD/m3·d, the reactor achieved the treatment effect without being affected in the performance. Finally, tracer experiments were performed to measure the internal circulation and residence time distribution (RTD) of wastewater in the reactor. It was found that the internal circulation of wastewater evidently exists in the reactor. Meanwhile, the RTD characteristics were described with the tanks-in-series model, and under the operating conditions, the calculated model parameter n was ranged from 1.19 to 1.27, which indicated that the flow pattern in the reactor is close to that in a CSTR. The internal circulation causes the organic matters in the influent to be effectively diluted within the reactor, and also promotes the organic matters to be fully degraded, so that the reactor can present high adaptability to the variation of organic load and high removal efficiency to COD and NH3-N. As a result, the biological fluidized bed reactor is suggested to be a prospective unit for the treatment of wastewater from sugar production process.


2020 ◽  
Vol 10 (9) ◽  
Author(s):  
Abeer I. Alwared ◽  
Wisam Sh. Jaber

Abstract In this study, a new type of circulating three-phase fluidized bed reactor was conducted by adding a spiral path and was named as spiral three-phase fluidized bed reactor (TPFB-S) to investigate the possibility for removing engine oil (virgin and waste form) from synthetic wastewater by using Ricinus communis (RC) leaves natural and activated by KOH. The biosorption process was conducted by changing particle diameter in the range 150–300 and 300–600 µm, liquid flow rate in the range 2.5–4.5 L/min and gas flow rate in range of 0–1 L/min, while other parameters initial oil emulsion concentration, pH, adsorbent concentration, agitation speed and contact time were kept constant at 2000 mg/L, 2,400 mg/L, 200 rpm and 90 min, respectively. Both FTIR and SEM tests showed that the Ricinus communis surface contains of active and strong groups; therefore, it shows a morphological characteristic of interest. The tests of FTIR and SEM explained that the adsorbent solid texture consists of negative valences that related to strong and active groups like carboxyl and hydroxyl groups. Furthermore, the results showed that the removal efficiency reaches about 91 and 98% for both virgin and waste oil at 150–300 µm particle size, 3.5 l/min liquid phase flow rate and 1 L/min air flow rate and for 90 min by using natural and activated form of RC leaves, respectively. In addition, results revealed that 95% of oil was recovered from the adsorbent by using 150mL/L of hexane. Finally the results concluded that TPFB-S has a better performance than the traditional fluidized bed, where the removal efficiency was enhanced by about 23% and 17% for removing virgin oil emulsion from aqueous solution by natural and activated form of adsorbent, respectively.


Sign in / Sign up

Export Citation Format

Share Document