Effect of Tool Angle on Friction Stir Welding of Aluminum Alloy 5052: Role of Sheet Thickness

2011 ◽  
Vol 410 ◽  
pp. 196-205 ◽  
Author(s):  
P. Jayachandra Reddy ◽  
Satish V. Kailas ◽  
Tirumalai S. Srivatsan

The technique of friction stir welding (FSW) does offer several advantages over conventional welding techniques. In this paper is presented the results of an investigation aimed at understanding the effect of tool angle on welding of sheets of commercially pure aluminum and aluminum alloy AA5052-H32 having different thickness. The present study demonstrates the feasibility of using friction stir welding (FSW) for joining two different thickness sheets of commercially pure aluminum (t = 1.5 mm and t = 2.0) with sheets of aluminum alloy 5052-H32 having thickness of 1.6 mm and 2 mm. It was found that the tool angle does play a major role in the welding of sheets having different thickness. Formation of the FSW zone was analyzed both macroscopically and microscopically. The tensile properties of the joints were evaluated and correlated with the formation and presence of the FSW zone. From this study it was found that the tool angle for commercially pure aluminum having a thickness of 1.5 mm and 2.0 mm is 2.580. The tool angle is 1.910 for the sheets of AA 5052-H32 having a thickness of 1.6 mm and 2 mm. The joint efficiency of the friction stir welded AA 5052-H32 was 87.5 pct. when compared to the base material. The hardness was also observed to drop in the region of the weld. Key words: Friction stir welding, tool angle, aluminum alloy (AA5052-H32), Hardness, macrostructure, microstructure.

Author(s):  
Srinivasa Rao Pedapati ◽  
Dhanis Paramaguru ◽  
Mokhtar Awang

As compared to normal Friction Stir Welding (FSW) joints, the Underwater Friction Stir Welding (UFSW) has been reported to be obtainable in consideration of enhancement in mechanical properties. A 5052-Aluminum Alloy welded joints using UFSW method with plate thickness of 6 mm were investigated, in turn to interpret the fundamental justification for enhancement in mechanical properties of material through UFSW. Differences in microstructural features and mechanical properties of the joints were examined and discussed in detail. The results indicate that underwater FSW has reported lower hardness value in the HAZ and higher hardness value in the intermediate of stir zone (SZ). The average hardness value of underwater FSW increases about 53% greater than its base material (BM), while 21% greater than the normal FSW. The maximum micro-hardness value was three times greater than its base material (BM), and the mechanical properties of underwater FSW joint is increased compared to the normal FSW joint. Besides, the evaluated void-area fraction division in the SZ of underwater FSW joint was reduced and about one-third of the base material (BM). The approximately estimated average size of the voids in SZ of underwater FSW also was reduced to as low as 0.00073 mm2, when compared to normal FSW and BM with approximately estimated average voids size of 0.0024 mm2 and 0.0039 mm2, simultaneously.


2012 ◽  
Vol 186 ◽  
pp. 331-334
Author(s):  
Mateusz Kopyściański ◽  
Stanislaw Dymek ◽  
Carter Hamilton

This research characterizes the changes in microstructure that occur in friction stir welded extrusions of a novel 7042 aluminum alloy. Due to the presence of scandium the base material preserved the deformation microstructure with elongated grains and fairly high dislocation density. The temperature increase with simultaneous severe plastic deformation occurring during friction stir welding induced significant changes in the microstructure within the weld and its vicinity. The weld center (stir zone) was composed of fine equiaxed grains with residual dislocations and a modest density of small precipitates compared to the neighbouring thermomechanically and heat affected zones where the density of small precipitates was much higher.


Author(s):  
J.C. Verduzco Huarez ◽  
R. Garcia Hernandez ◽  
G. M. Dominguez Almaraz ◽  
J.J. Villalón López

This research work focuses on the study of the improvement of mechanical properties, specifically the tensile strength of 6061-T6 aluminum alloy on prismatic specimens with 9.5 mm thickness that has been subjected to friction stir welding process and two heat treatments; solubilized and aging before or after the welding process. Three cases studied and evaluated were, welding of the base material without heat treatment (BMW), solubilized heat treatment and partial aging of the base material before welding (HTBW), and heat treatment of solubilized and aging of the base material after welding (HTAW). The obtained results show an increase of about 10% (20 MPa) of tensile strength for the HTBW process, compared to BMW case. In addition, for the case of HTAW, the obtained tensile resistance presents a joint efficiency of 96%, which is close to the tensile strength of the base material (»310 MPa).


2016 ◽  
Vol 710 ◽  
pp. 41-46 ◽  
Author(s):  
Aline F.S. Bugarin ◽  
Fernanda Martins Queiroz ◽  
Maysa Terada ◽  
Hercílio G. De Melo ◽  
Isolda Costa

2XXX and 7XXX high strength aluminum alloys are the most used materials for structural parts of aircrafts due to their high strength/weight ratio. Their joining procedure is an engineering challenge since they present low weldability. Friction Stir Welding (FSW) is a joining technology developed in the early 90 ́s. It is a solid-state welding process, without the use of fillers or gas shield, that eliminates conventional welding defects and has been considered of great interest for application in the aircraft industry. FSW of aluminum alloys results in four regions of different microstructures, specifically: the base material (BM), the heat affected zone (HAZ), the thermo-mechanically affected zone (TMAZ), and the nugget zone (NZ). The complex microstructure of the weld region leads to higher susceptibility to localized corrosion as compared to the BM even when similar alloys are joined. The welding of dissimilar alloys in its turn results in even more complex microstructures as materials with intrinsically different composition, microstructures and electrochemical properties are put in close contact. Despite the great interest in FSW, up to now, only few corrosion studies have been carried out for characterization of the corrosion resistance of dissimilar Al alloys welded by FSW. The aim of this study is to investigate the corrosion behavior of aluminum alloy 2024-T3 (AA2024-T3) welded to aluminum alloy 7475-T761 (AA7475-T761) by FSW. The evaluation was performed in 0.01 mol.L-1 by means of open circuit potential measurements, polarization techniques and surface observation after corrosion tests.


2020 ◽  
pp. 65-70
Author(s):  
A.N. Feofanov ◽  
V.V. Ovchinnikov ◽  
A.M. Gubin

Friction stir welding of butt joints of aluminum alloys is considered. It is experimentally determined, that when temperature and time parameters are violated, defects in the form of discontinuities are localized at the boundary of the weld and the base metal, due to incompatibility of deformations of the weld metal and the adjacent base material. Keywords friction welding with stirring, aluminum alloy, mode parameters, structure, defects, strength. [email protected]


2009 ◽  
Vol 424 ◽  
pp. 137-144
Author(s):  
Lorenzo Donati ◽  
Luca Tomesani

In this paper, an innovative approach is presented for joining two sheets with an extruded profile all made by AA6082-T6 aluminum alloy. The tested configuration is the T-joint and the innovation presented in this paper is the use of a specially design appendix of the extruded profile as filler material during the friction welding. In particular three configurations were analyzed: without appendix, with I appendix and with T appendix. In the experiments, several process parameters and PIN shapes were investigated in order to determine optimal processing conditions able to produce an effective sound weld. Specimens were extracted from the joint and tensile tests were performed along the sheet direction thus allowing a comparison of the welded sections respect to the base material. It was found that the appendixes of the extrude profile are able to effectively fill the distance between the sheets and, in particular with the T shape, a gap up to 1,7 mm on the retreating side was successfully welded.


2017 ◽  
Vol 7 (3) ◽  
pp. 1619-1622
Author(s):  
J. A. Al-jarrah ◽  
A. Ibrahim ◽  
S. Sawlaha

This paper investigates the effect of axial force on the surface appearance and mechanical properties of 6061 aluminum alloy welded joints prepared by friction stir welding. The applied pressure varies from 1.44 to 10.07 MPa. The applied pressure was calculated from the axial force which exerted by a spring loaded cell designed for this purpose. Defect free joints obtained at an applied pressure of 3.62 MPa. The mechanical properties of the welded joints were evaluated through microhardness and tensile tests at room temperature. From this investigation, it was found that the joint produced with an applied pressure of 5.76 MPa exhibits superior tensile strength compared to other welded joints. The fracture of this joint happened at the base material.


Sign in / Sign up

Export Citation Format

Share Document