Comparative Study to Analyze the Effect of Tempering during Cryogenic Treatment of Tungsten Carbide Tools in Turning

2011 ◽  
Vol 410 ◽  
pp. 267-270 ◽  
Author(s):  
Nirmal S. Kalsi ◽  
Rakesh Sehgal ◽  
Vishal S. Sharma

Cryogenic treatment of cutting tool material has been reported improving properties of the materials, resulting improved performance. Tungsten carbide is most accepted and widespread cutting tool material in the industry. Cryogenically treatment of tungsten carbide has shown favorable results. However, still much is unknown about the treatment for improvement in properties of the materials, to make the process identical to the existing conventional heat-treatment process in implementation. Importance of tempering during cryogenic treatment has also been reported, however hardly we find any documentation regarding the effect of the number of tempering cycles during cryogenic treatment. This work is based upon to know the effect of the number of tempering cycles during cryogenic treatment of tungsten carbide tool material. Comparison study was done for untreated and cryogenically treated tungsten carbide inserts following variable number of tempering cycles during the treatment, in turning process. The performance was evaluated in terms of tool wear, power consumption and surface roughness achieved. Cryogenically treated inserts have shown favorable results. At low cutting conditions, performance was better and has not got affected by the number of tempering cycles whereas the number of tempering cycles during cryogenic treatment does effects at high cutting conditions, and two or three tempering cycles has shown better results.

Author(s):  
Kenneth A. Arner ◽  
Christopher D. Agosti ◽  
John T. Roth

As a cutting tool wears, the quality of the parts being produced by the tool are reduced. Therefore, it is important to change cutting tools whenever the wear on the tool begins to cause unacceptable or out-of-specification parts. However, frequent replacement of tooling is not only expensive, it also results in a loss of production throughput. Therefore, in order to lower tooling costs and increase production rates, it is vital to extend cutting tool life. Thus, this research focuses on establishing the effect that cryogenically treating carbide inserts has on the overall tool life when the tools are operating in production. To validate the effectiveness, multiple treated and untreated cutting tools for five styles of inserts are examined. The cutters are tested in production lines that are fabricating parts for an industrial partner where the only process variable that is changed is the cryogenic treatment of the tooling. For the five insert styles tested, each style provided very consistent changes in overall tool life. However, the amount of improvement was dependent on the tool style. One style was found to have its life doubled, whereas, another style had its life decreased. Possible causes for this difference in effectiveness of the treatment are presented, along with a discussion concerning the actual costs savings that the treatment represents for the industrial partner.


2019 ◽  
Vol 109 (11-12) ◽  
pp. 862-867
Author(s):  
K. Kropidlowski ◽  
E. Uhlmann ◽  
M. Woydt ◽  
G. Theiler ◽  
T. Gradt

Als mögliche Substitution des konventionellen Hartmetalls Wolframcarbid (WC), wird Niobcarbid (NbC) für den Einsatz in Zerspanwerkzeugen getestet. Es werden verschiedene NbC-Spezifikationen verwendet, die sich in der chemischen Zusammensetzung und den mechanischen Eigenschaften unterscheiden. Trockene Außenrunddrehversuche an Kohlenstoffstahl C45E, Zahnradstahl 42CrMo4+QT und der Aluminiumlegierung AlSi9Cu4Mg werden durchgeführt, um verschiedene NbC-Schneidstoffe mit handelsüblichen WC-Werkzeugen zu vergleichen. Um die Auswirkung einer höheren thermomechanischen Belastung während der Bearbeitung aufzuzeigen, wird die Schnittgeschwindigkeit variiert. Die Zerspanungsleistung aller untersuchten Versuchswerkstoffe wird hinsichtlich Spanvolumen Vw, Kolkverschleiß KT sowie der erreichbaren Oberflächenrauheit Ra und Rz des Werkstücks beurteilt. Im Rahmen der Untersuchungen wird bei erhöhten Schnittgeschwindigkeiten vc eine verbesserte Werkzeugleistung der verschiedenen NbC-Schneidwerkzeuge im Vergleich zum WC-Referenzmaterial aufgezeigt. Der Vergleich der Oberflächenqualität der Werkstoffe nach der Zerspanung zeigt, dass NbC, trotz sporadisch höherer Verschleißraten, vergleichbare Oberflächenqualitäten liefert. Die prototypischen NbC-Schneidstoffe erreichen bei der Zerspanung von C45E ein höheres Spanvolumen Vw als das WC-Referenzsubstrat. Für die Bearbeitung von 42CrMo4+QT und AlSi9Cu4Mg sind Weiterentwicklungen notwendig, um höhere Standzeiten zu erzielen.   In order to investigate a possible substitution of the conventional substrate material tungsten carbide (WC), niobium carbide (NbC) is tested for the use as a cutting tool in turning processes. Different straight NbC materials are applied, differing in chemical composition and mechanical properties. Dry external cylindrical turning tests on carbon steel C45E, gear steel 42CrMo4+QT and aluminium alloy AlSi9Cu4Mg are carried out comparing various NbC based cutting materials with commercially available WC-based tools. Cutting speed is varied to show the impact of higher thermomechanical load during machining. The cutting performance of all investigated cutting tool materials is assessed regarding material removal VW, crater wear KT as well as surface roughness Ra und Rz of the workpiece. Improved tool performance of different NbC cutting tool grades compared to commonly applied WC tool material at increased cutting speeds vc is demonstrated within the investigation. The comparison of the surface quality of the workpiece materials after the cutting process shows that NbC produces comparable surface qualities despite occasional higher wear rates. Prototypical NbC cutting materials achieve a higher material removal VW during the machining of C45E than the WC reference substrate. For the machining of 42CrMo4+QT and AlSi9Cu4Mg, further developments are necessary to achieve longer tool life.


2006 ◽  
Vol 129 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Alexander Bardetsky ◽  
Helmi Attia ◽  
Mohamed Elbestawi

Background. Aluminum alloys are extensively used in the automotive industry and their utilization continues to rise because of the environmental, safety and driving performance advantages. Experimental study has been carried out in this work to establish the effect of cutting conditions (speed, feed, and depth of cut) on the cutting forces and time variation of carbide tool wear data in high-speed machining (face milling) of Al–Si cast alloys that are commonly used in the automotive industry. Method and Approach. The experimental setup and force measurement system are described. The cutting test results are used to calibrate and validate the fracture mechanics-based tool wear model developed in part 1 of this work. The model calibration is conducted for two combinations of cutting speed and a feed rate, which represent a lower and upper limit of the range of cutting conditions. The calibrated model is then validated for a wide range of cutting conditions. This validation is performed by comparing the experimental tool wear data with the tool wear predicted by calibrated cutting tool wear model. Results and Conclusions. The maximum prediction error was found to be 14.5%, demonstrating the accuracy of the object oriented finite element (OOFE) modeling of the crack propagation process in the cobalt binder. It also demonstrates its capability in capturing the physics of the wear process. This is attributed to the fact that the OOF model incorporates the real microstructure of the tool material. The model can be readily extended to any microstructure of Al–Si workpiece and carbide cutting tool material.


2014 ◽  
Vol 592-594 ◽  
pp. 87-91
Author(s):  
A. Muthuraja ◽  
S. Senthilvelan

In this study, an attempt has been made to develop solid lubricant cutting tool material with the aid of powder metallurgy technique. Chosen tungsten carbide, cobalt and calcium fluoride were milled in the planetary ball milling, followed by uniaxial compaction and sintering in a tube furnace. Materials were milled at various hours of milling and compaction pressure to understand the effect of relative density and hardness of sintered specimens. It is found that the relative density of compacted and sintered specimens found to increase with the compaction pressure but decreased with milling time after particular time. From the investigation, 40 hr of milling and 400 MPa compaction pressure found to be suitable for the development of proposed material. In this work, sample density was measured by the Archimedes’ method and hardness was measured by Rockwell hardness tester.


Sign in / Sign up

Export Citation Format

Share Document