Preparation and Characterization of Monodispersed BaTiO3 Nanocrystals Using One-Step Solvothermal Method

2011 ◽  
Vol 412 ◽  
pp. 82-85
Author(s):  
Hui Zhang ◽  
Xiao Hui Wang ◽  
Zhi Bin Tian ◽  
Cai Fu Zhong ◽  
Yi Chi Zhang ◽  
...  

A convenient one-step solvothermal method has been developed to synthesize monodispersed barium titanate nanocrystals with an average size of 5 nm. The key point of this method is the controlling of hydrolysis of Ti (OC4H9)4with Diethylene glycol (DEG). The as-prepared BaTiO3nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), FT-IR and TG/DTA analysis. The monodispersed BaTiO3nanoparticles obtained by this method have an average size of 5 nm with a narrow size distribution and a lattice tetragonality of 1.0069, which is promising for the ferroelectric science and its industry application.

2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2016 ◽  
Vol 697 ◽  
pp. 706-709
Author(s):  
Ming Gong ◽  
Chang An Wang

V2O5 hollow microspheres were synthesized by a one-step solvothermal method, with the assistance of PVP as the soft template, ethylene glycol (EG) as the solvent, and vanadium (iii) acetylacetonate (acac) as the metal-ions source. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM). The size of V2O5 hollow microspheres, which can be easily tuned by using PVP of different molecular weights, was about 2.5μm, 4.5μm and 6μm when using PVP-K17, PVP-K30 and PVP-K60 as the template, respectively.


2011 ◽  
Vol 694 ◽  
pp. 113-117
Author(s):  
Jun Zhang ◽  
Xin Li ◽  
Yu Li Feng ◽  
Bo Xu ◽  
Yan Hui Guo

Nano-sized molybdenum disulfide has been prepared by hydrothermal method via surfactant and ultrasonic assistance, using sodium molybdate and thiourea as reagents. The as-synthesized MoS2 samples were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscope (TEM); the effects of addition of CTAB on reaction process and resulted particles have been investigated in detail. It has been shown that the addition of CTAB can not only prevent the agglomeration of the particles, but regulate their morphologies and phase compositions. The resulting 2H-MoS2 with hexagonal phase and average size of 10-20nm can be directly obtained at low hydrothermal temperature needless of high-temperature sintering and inert gas protection.


2016 ◽  
Vol 35 (5) ◽  
pp. 493-498
Author(s):  
Masoud Salavati-Niasari ◽  
Mahdiyeh Esmaeili-Zare ◽  
Mina Gholami-Daghian ◽  
Samira Bagheri

AbstractManganese oxyhydroxide (MnOOH) nanoparticles were synthesized by the reaction of [Mn(Hsal)2] complex and NaOH in the presence of ultrasound irradiation. In this study, the effect of different reaction parameters such as type of solvent, sonication time and type of surfactant on the morphology and the particle size of product were studied. The as-synthesized nanoparticles, with an average size of 10–15 nm, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR) and energy dispersive spectrometry (EDS). To the best of author’s knowledge, it is the first time that [Mn(Hsal)2] complex is used as manganese source for the synthesis of MnOOH nanoparticles.


2013 ◽  
Vol 701 ◽  
pp. 163-166 ◽  
Author(s):  
Saba Jamil ◽  
Xiao Yan Jing ◽  
Jun Wang ◽  
Mi Lin Zhang

Zinc oxide with spherical shaped and flower shaped morphology are prepared by simple one step solvothermal method. The product is subjected to characterization to investigate the morphology and size by using X ray diffraction , semi electron microscopy and transmission electron microscopy. The size of the prepared zinc oxide particle is in the range of 1 micrometer to 3 micrometers. The outer surface of the particles is not smooth but it is rough. The possible formation mechanism for the product is investigated that is further justified by means of structural characterization.


Author(s):  
Xianxue Li

Abstract Well-dispersed cerium-doped Y2SiO5 (Ce:YSO) phosphor particles with spherical morphology and good luminescence intensity have been achieved by a solvothermal method with ethanol and water as solvent media. X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectrophotometry and transmission electron microscopy were employed to characterize the as-synthesized Ce:YSO precursor and powders. The results showed that pure-phase Ce:YSO powders with a mean particle size of about 162 nm were accurately available at 310°C and above. The fluorescence ability and persistent luminescence decay properties of the Ce:YSO powders were also studied, and the excellent fluorescence properties could be attributed to the homogeneous Ce:YSO particles obtained through the solvothermal method.


2010 ◽  
Vol 663-665 ◽  
pp. 894-897
Author(s):  
Hua Huang ◽  
Hai Hu Yu ◽  
Ling De Zhou ◽  
Er Dan Gu ◽  
De Sheng Jiang

Hybrid Graphene-ZnS nanopaticles (G-ZnS NPs) were prepared by using a solvothermal method. A dispersion of graphite oxide (GO) and zinc acetate dihydrate (Zn(CH3COO)2.2H2O) in dimethl sulfoxide (DMSO) reacted at 180 °C for 12 h in a Telfon-lined stainless steel autoclave. In the reaction, DMSO serves as a sulphide source as well as a reducing agent, resulting formation of the hybrid G-ZnS NPs in one-step. Hybrid G-ZnS NPs were characterized by using a powder X-ray diffractometer, a Fourier-transform infrared spectrometer, a transmission electron microscope, a UV-vis spectrophotometer and a fluorescence spectrophotometer, respectively. In the FTIR spectra, the GO related stretching bands of C-O and carboxyl groups are not observed in the spectra of G-ZnS, suggesting that the GO sheets were reduced to graphene sheets. In the TEM images, it is observed that the ZnS nanoparticles with an average size of 23 nm are attached onto the graphene sheets. The UV-vis absorption spectrum of the G-ZnS NPs dispersed in ethanol has an absorption peak of G at 261 nm and a weak shoulder of ZnS NPs around 320 nm. The broadening and weakening of the peak of ZnS NPs at 320 nm arises from the interparticle coupling effect. Under excitation at 225 nm, a peak around 386 nm and other weaker bands appear in the fluorescence spectrum of the G-ZnS. The band at 386 nm is attributed to zinc vacancies.


2020 ◽  
Vol 32 (6) ◽  
pp. 1505-1510
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Anees Ahmad

In present study, the synthesis and characterization of a novel polypyrrole (PPy)/tin oxide (SnO2)/MWCNT nanocomposite along with pristine polypyrrole is reported. These materials have been studied for their structural and morphological properties by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. PPy/SnO2/MWCNT nanocomposite has been converted into a pellet-shaped sensor, and its ammonia sensing studies were carried out by calculating the variation in the DC electrical conductivity at different concentration of ammonia ranging from 10 to 1500 ppm. The sensing response of the sensor was determined at 1500, 1000, 500, 200, 100 and 10 ppm and found to be 70.4, 66.1, 62.2, 55.4, 50.8 and 39.7%, respectively The sensor showed a complete reversibility at lower concentrations along with excellent selectivity and stability. Finally, a sensing mechanism was also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of ammonia molecules


2012 ◽  
Vol 512-515 ◽  
pp. 2019-2022 ◽  
Author(s):  
Xiao Lu Liang ◽  
Xian Hua Wei

Cu2FeSnS4semiconductor nanocrystals with zincblende structure have been successfully synthesized by a hot-injection approach. Cu+, Fe2+, and Sn4+cations have a random distribution in the zincblende unit cell, and the occupancy possibilities are 1/2, 1/4 and 1/4, respectively. Those nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), and UV-Vis-NIR absorption spectroscopy. The Cu2FeSnS4 nanocrystals have an average size of 7.5 nm and a band gap of 0.92 eV.


2003 ◽  
Vol 776 ◽  
Author(s):  
Xicheng Ma ◽  
Yuanhua Cai ◽  
Xia Li ◽  
Ning Lun ◽  
Shulin Wen

AbstractHigh-quality cobalt-filled carbon nanotubes (CNTs) were prepared in situ in the decomposition of benzene over Co/silica-gel nano-scale catalysts. Unlike the previous reports, the catalysts needn't be pre-reduced prior to the forming of Co-filled CNTs, thus the advantage of this method is that Co-filled CNTs can be produced in one step, at a relatively low cost. Transmission electron microscopy (TEM) investigation showed that the products contained abundance of CNTs and most of them were filled with metallic nanoparticles or nanorods. High-resolution TEM (HRTEM), selected area electron diffraction (SAED) patterns and energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Co inside the nanotubes. The encapsulated Co was further identified always as high temperature alpha-Co phase with fcc structure, which frequently consists of twinned boundaries and stacking faults. Based on the experimental results, a possible growth mechanism of the Co-filled CNTs was proposed.


Sign in / Sign up

Export Citation Format

Share Document