The Effect of Percentage of Primary α on Mechanical Properties of Bimodal Microstructure of TC4

2011 ◽  
Vol 418-420 ◽  
pp. 173-178
Author(s):  
Jing Min Yang ◽  
Yang Wei Wang ◽  
Ju Bin Gao ◽  
Pan Xiong

In order to discuss the effect of content of primary α on properties of bimodal microstructure, the TC4 sheet in rolling state was heat treated at different temperatures of 10~50°Cbelow the β-transus temperature, then a series of bimodal microstructures with different content of primary α were obtained by air-cooled procedure. Quasi-static and dynamic compress tests were carried out with universal material testing machine and Split Hopkinson Pressure Bar (SHPB) respectively. The results indicated that the relationship between mechanical properties and primary α is irregular, and that bimodal microstructure with 25% primary α shows a better combination of strength and ductility.

2013 ◽  
Vol 705 ◽  
pp. 21-25 ◽  
Author(s):  
Wei Ping Bao ◽  
Zhi Ping Xiong ◽  
Xue Ping Ren ◽  
Fu Ming Wang

Effect of strain rate on mechanical properties of pure iron was studied by compression experiments using Gleebe-1500D thermal simulation testing machine and Split-Hopkinson Pressure Bar, indicating that pure iron only has strain rate hardening effect. Adiabatic temperature rise tends to increase with increasing the strain rate. Work hardening effect is also analyzed. It found that there are only two work hardening regions in static stage (10-3 to 1 s-1) while there are three work hardening regions in dynamic stage (650 to 8500 s-1). It is on account of onset of twining at high strain rates.


Author(s):  
Bowen Si ◽  
Zhiqiang Li ◽  
Gesheng Xiao ◽  
Xuefeng Shu

In this study, a dynamic indentation test method based on the split Hopkinson pressure bar is proposed to obtain the dynamic parameters of Ludwik power law constitutive, namely, Young’s modulus E, strength coefficient K, and strain hardening index n by analyzing dynamic indentation load-indentation depth curve obtained from the theories relating to the Hopkinson pressure bar. The important parameters, namely, loading curvature C and transformation factor [Formula: see text], are invoked to examine the dynamic indentation response results in a wide range of target material parameters. Finite element calculation results are processed through simulation of dynamic indentation response with broad material parameters. Furthermore, the analytical method is used to fit simulation results to obtain the analytical equations for elastic–plastic parameters and curvature parameters for the subsequent analysis. The analytical equation of forward model to predict dynamic indentation response parameter–loading curvature C of a known material is proposed. Then, the elastic–plastic parameters of unknown materials (according to Ludwik power law) are obtained by substituting the dynamic indentation response parameters into an inverse analytical equation under the two types of half-cone angle indenters. The method is verified by other typical materials, which shows that the dynamic indentation test based on the split Hopkinson pressure bar can obtain sufficient conditions to obtain dynamic mechanical properties of target materials.


2015 ◽  
Vol 752-753 ◽  
pp. 784-789 ◽  
Author(s):  
Eun Hye Kim ◽  
Davi Bastos Martins de Oliveira

Dynamic mechanical behavior of geomaterials has been widely observed in tunneling, oil and gas extraction, and blasting in civil and mining applications. It is important to understand how much energy is necessary to break or fail geomaterials to optimize the design of blasting patterns, oil and gas extractions, demolition, military defense, etc. However, there is little understanding for quantifying the required energy to break geomaterials under dynamic loading. More importantly, as typical geomaterials tend to hydrate, it is necessary to understand how much energy will be needed to break the structures under water saturation. Thus, in this study, we analyzed the consumed energy used to deform geomaterials using a split Hopkinson pressure bar (SHPB), enabling to measure stress and strain responses of geomaterials under dynamic loading condition of high strain rate (102–104/sec). Two different saturation levels (dry vs. fully saturation) in two sandstone samples having different pore sizes were tested under dynamic loading conditions. Our results demonstrate that dynamic mechanical strength (maximum stress) is greater in the dry geomaterials when compared with the saturated samples, and Young’s modulus (or maximum strain) can be a useful parameter to examine porosity effects between dry and saturated geomaterials on dynamic mechanical properties.


2010 ◽  
Vol 129-131 ◽  
pp. 988-992
Author(s):  
Bo Wang ◽  
Tong Chen ◽  
Xue Feng Shu

In this paper, dynamic properties of EMC were studied at different temperatures and different strain rates. Firstly EMC was investigated by quasi-static tests. Secondly a series of dynamic compressive experiments of EMC were conducted using the Split Hopkinson Pressure Bar (SHPB) at sectional height of strain rates. Thirdly EMC constants in ZWT model were determined from experiments. Corresponding measurements were conducted at temperatures ranging from 20°C to 160°C. The results indicate that the yield strength and flow stress of EMC increase remarkably with the increase of strain rate and it is shows that the assembled curve is fit good accordance with actual the experimental curve. However, the yield strength of EMC is a little change with the increase of temperature which is ranging from 20°C to 160°C.


2014 ◽  
Vol 660 ◽  
pp. 562-566 ◽  
Author(s):  
Akbar Afdhal ◽  
Leonardo Gunawan ◽  
Sigit P. Santosa ◽  
Ichsan Setya Putra ◽  
Hoon Huh

The dynamic mechanical properties of a material are important keys to investigate the impact characteristic of a structure such as a crash box. For some materials, the stress-strain relationships at high strain rate loadings are different than that at the static condition. These mechanical properties depend on the strain rate of the loadings, and hence an appropriate testing technique is required to measure them. To measure the mechanical properties of a material at high strain rates, ranging from 500 s-1 to 10000 s-1, a Split Hopkinson Pressure Bar is commonly used. In the measurements, strain pulses are generated in the bars system, and pulses being reflected and transmitted by a test specimen in the bar system are measured. The stress-strain curves as the material properties of the test specimen are obtained by processing the measured reflected and transmitted pulses. This paper presents the measurements of the mechanical properties of St 37 mild steel at several strain rates using a Split Hopkinson Pressure Bar. The stress-strain curves obtained in the measurement were curve fitted using the Power Law. The results show that the strength of St 37 material increases as the strain rate increases.


Author(s):  
Marco Costanzi ◽  
Gautam Sayal ◽  
Golam Newaz

A Split Hopkinson Pressure Bar (SHPB), an experimental apparatus for testing of solid materials at high strain rates, was in-house designed and realized by the Mechanical Engineering Dept. of WSU: it can test different types of materials and provide their dynamic mechanical properties (e.g. Young’s modulus, hardening or plasticization coefficients, yield strength). This SHPB works at strain rate levels between 1000 and 3000 s-1 and impact speeds between 6 and 9 m/s. The specimen is simply a 6 mm dia. 3 mm long cylinder. The apparatus and its software were benchmarked by means of tests on Aluminum and Titanium, whose mechanical properties are well known, and later successfully applied to non-metallic materials like Nylon, Epoxy, Carbon fiber and glass fiber reinforced composites.


2013 ◽  
Vol 535-536 ◽  
pp. 473-476 ◽  
Author(s):  
Takeshi Iwamoto ◽  
Shiro Yamanaka ◽  
Alexis Rusinek

With a phenomenon of strain-induced martensitic transformation, TRIP steel is expected to show excellent impact energy absorption characteristic. It is important for an improvement of a reliability of TRIP steel to evaluate an amount of martensite. In this study, AISI304, which is a kind of TRIP steel, is deformed plastically by a conventional material testing machine and the split Hopkinson pressure bar apparatus. During the deformation of TRIP steel, a circuit based on the Kevin double bridge measures change in volume resistivity which has a correlation with the amount of martensite. Experimental results show that the change in volume resistivity during the process of deformation at various strain rates.


2013 ◽  
Vol 631-632 ◽  
pp. 383-387
Author(s):  
Lei Li ◽  
Jian Hua Liu ◽  
Yao Feng Ji

In order to study dynamic mechanical properties of float glass under blast and ballistic/fragmentation impacts, the curves of stress- strain are obtained in higher ranges by using the modified Split Hopkinson Pressure Bar (SHPB) techniques. Experimental results indicate that float glass is nonlinear elastic-brittle materials, and its dynamic curves of stress-strain are nonlinear and can be divided into three stages: elastic, nonlinear strengthening and stress drop. The dynamic Young’s modulus and the dynamic compressive strength of float glass increase with the increasing of strain rate. Finally, an explanation was given according to principle of energy equilibrium of Griffith.


2011 ◽  
Vol 291-294 ◽  
pp. 1131-1135
Author(s):  
Guo He Li ◽  
Yu Jun Cai ◽  
Hou Jun Qi

By electronic universal testing machine and Split Hopkinson Pressure Bar, the mechanical properties data of Fe-36Ni invar alloy are gained at a range of temperature from 20°C to 800°C and strain rate from 10-3 /s to 104/s. An improved Johnson-Cook model is presented to describe the mechanical behavior of Fe-36Ni invar alloy at high temperature and high strain rate, and verified by experimental results.


Sign in / Sign up

Export Citation Format

Share Document