Fatigue Life Analysis of Shaking Table’s Exciting Beam Based on Finite Element Analysis

2011 ◽  
Vol 421 ◽  
pp. 208-211
Author(s):  
Hai Bin Gong ◽  
Jian Su ◽  
Dong Lin Zhang ◽  
Li Wang ◽  
Xing Yu Wang

With large scale increases of the train speed, the development of one reliability test bed which can simulate vibration environment becomes the extremely urgent task. The shaking table is one of key reliability test equipments, and its design and development is in needs immediately. The fatigue strength is basic design index of shaking table. Based on the load time history acquired by track spectrum, combined with finite element model of exciting beam and material properties, the fatigue life of exciting beam is predicted by Miner cumulative damage rule method in this paper.

Author(s):  
Recep M. Gorguluarslan ◽  
Seung-Kyum Choi

This research examines classification approaches for estimating the reliability of structural systems. To validate the accuracy and efficiency of the classification methods, a practical engineering problem; namely, a spider assembly of a washing machine, has been considered. For the spider assembly, fatigue life test, finite element analysis, physical experimentation, and a classification processes are conducted in order to establish the analytical certification of its current design. Specifically, the finite element analysis and fatigue life analysis are performed and their results are validated compared to physical experimental results. The classification process is developed to estimate the probability of failure of the spider assembly in terms of stress and fatigue life. The relationship between the random quantities and structural responses of the spider assembly is established using probabilistic neural network and the support vector machine classifiers. The performance margin of the spider assembly is fully identified based on the estimated failure probability and structural analysis results from the fatigue life analysis and classifications.


2013 ◽  
Vol 372 ◽  
pp. 292-296 ◽  
Author(s):  
K. Annamalai ◽  
S. Sathyanarayanan ◽  
C.D. Naiju ◽  
Mohammed Shejeer

This study is focused on predicting the fatigue life expectancy of Girth gear-pinion assembly used in cement industries. Gear design and modeling was carried out using a CAD package and analysis was done using finite element analysis software, ANSYS. AISI 4135-low alloy steel material properties are considered and linear elastic finite element analysis and fatigue life analysis were carried out. The variable amplitude load is applied to simulate the real time loading of the gear-pinion assembly. Rainflow cycle counting algorithm and Minars linear damage rule is employed to predict the fatigue life. The critical stress and the corresponding deformation are discussed in the results. Finally the life expectancy of the girth gear and pinion assembly is estimated which would be useful for the periodical maintenance of the gear assembly.


2018 ◽  
Vol 4 (4) ◽  
pp. 13
Author(s):  
Anand Mohan Singh ◽  
Megha Bhawsar ◽  
Neeraj Kumar Nagayach

In this present work a virtual environment has been created to investigate the failure analysis on spur gear assembly in which structural analysis, fatigue failure analysis and contact stress analysis have been performed using finite element method. For this work, a three dimensional cad model has been created and imported to ANSYS workbench for further finite element analysis. Various boundary conditions have been used to perform structural, fatigue failure assessment and contact analysis such as revolute joints is provided with Body Ground connection for 60 rpm for structure analysis, Augmented Lagrange method is set for contact analysis, for fatigue life analysis the fatigue strength factor is used as 0.85 for fully reverse loading and the life of shear stress in cycles and for the contact analysis linear and nonlinear contact are used for both source and target body. It has been observe that contact stress and bending stress not attain their maximum values at the same points, if the contact stress minimize in primary design stage then the failure of gear can minimized by analysis of the problem during the earlier stage of design. It can also be state that by using finite element analysis complex analysis like fatigue and contact analysis can be performed very accurately within a very short time and cost effectively rather than experimental analysis.


2013 ◽  
Vol 572 ◽  
pp. 513-516 ◽  
Author(s):  
Ismail Gerdemeli ◽  
Serpil Kurt ◽  
Ali Semih Anil

In this study, fatigue life of axial loaded wire rope strands are investigated in computer environment. For this purpose generated models about finite element analysis of wire ropes, conducted researches and fatigue condition of wire ropes are investigated. The condition required in order not to contact outer wires with each other is expressed with the purpose of modeling simple strand and the generated model is confirmed by using defined geometrical values. 3D solid model of 1+6 simple strand used in finite element analysis is generated in CAD software SolidWorksTM. Finite element analysis of simple strand is done by FEA software ANSYSTM. Fatigue analyses are done by ANSYS/Workbench for experimental groups generated by using 3 different parameters which are strand length, helix angle and force range. Graphics, which show fatigue life variance of axial loaded 1+6 simple strand, are created by obtaining fatigue life distribution according to Goodman approach.


Author(s):  
Kari Gonzales ◽  
Kevin Koch ◽  
Daniel Carter

Recent failures of large freight car castings have resulted in a comprehensive review of the specifications governing the manufacture, inspection, and repair of these steel castings. As part of an overall industry effort to improve the quality and reliability of large freight car castings, the Transportation Technology Center, Inc. (TTCI) conducted finite element and fatigue analyses of the S-2-HD bolster and side frame. The objective of this project is to improve the capacity and safety of train operations by reducing the number of in-service failures of bolsters and side frames. To meet the objective, a total of six S-2-HD bolster and side frame castings from different manufacturers were modeled to estimate the fatigue life of each of the components with and without defects. The results from the finite element analysis were combined with load/stress environment data and mechanical test data to predict the fatigue life of each of the components. The fatigue life analysis covered a variety of defect and no defect conditions and used a strain-life based approach. All of the fatigue estimates are based on life until crack initiation and compared to a target life of 1.5-million loaded miles. Results from the analysis show that few combinations of casting design and defect type/size offer sufficient fatigue strength to reach a target life of the desired 1.5-million loaded miles. The analyses also indicate that a reduction in component stress is necessary to improve the overall fatigue performance of the S-2-HD bolster and side frame castings when defects are present in critical stress areas. To reduce the number of derailments associated with truck castings, improvements in component design, manufacturing processes, and materials are necessary. Implementation of changes in design and materials has the potential to reduce stress in critical areas and increase fatigue life performance when defects are present. In addition, it is critical to develop inspection methods capable of reliably detecting defects to prevent in-service failures. If the aforementioned changes are implemented successfully, there is a potential of reducing in-service failures of truck castings by approximately 30 percent. This paper presents the approach and results of the bolster analysis and gives a brief summary of the results of the side frame analysis.


2010 ◽  
Vol 37-38 ◽  
pp. 466-470 ◽  
Author(s):  
Yong Yan Wang ◽  
Xin Hua Fu ◽  
Tian Tong Guo ◽  
Li Chen ◽  
Hui Qing Mao

Based on the theory of fatigue life prediction and by using the local stress-strain method and the material S-N curve of Q235 deduced by empirical formula; the fatigue was analyzed for the key parts of large-scale liner vibration screener by means of the general finite element analysis software, ANSYS. Thereby, the working conditions of force bearing, reliability and fatigue life-span of the key parts can be judged. The study will provide a theoretical basis for the design , manufacture, and installation of the large-scale liner vibration screener.


Author(s):  
Weishun W. Ni ◽  
Christopher L. Tucker ◽  
Steve D. Able ◽  
Michael D. Mann

Computer Aided Design and Finite Element Analysis packages that have been developed are capable of providing a relatively accurate fatigue life prediction. These software packages have made nonlinear analysis more reliable in forecasting a component’s fatigue life. A safe-life (in which the components are safe from failure during the estimated service life) can be predicted during the design process. The autofrettage technique has long been applied in high-pressure industries in order to extend the components’ life. The critical parameters that must be understood during a fatigue life analysis are material properties, including cyclic loading properties and stress excursion during the service cycle. In this paper, a three-dimensional finite element analysis of an autofrettaged manifold is presented. This assessment investigated an ANSI 316 stainless steel Tee-fitting, which was exposed to different cyclical loading conditions (two autofrettage conditions at a normal operation level). This was done in order to compare finite element analysis results to actual laboratory experimental results.


Author(s):  
Yoshiyuki Miyauchi ◽  
Tomoyo Taniguchi ◽  
Teruhiro Nakashima ◽  
Junichi Hongu ◽  
Daisuke Okui

Abstract Two unanchored vinyl chloride scale tank models, whose diameter, height and thickness of their shell and base were 860 mm, 400 mm and 0.5 mm respectively, were set on a shaking table for experiencing the horizontal motion. These scale tank models satisfy law of similarity to have an equivalent strain under the action of loads. The first scale tank model has no stiffeners on its cylindrical shell that allows out-of-round deformation of the cylindrical shell during the shaking table test. To understand effects of the out-of-round deformation of the cylindrical shell on the tank uplift, the sweeping test is carried out. The Operational Modal Analysis clarifies that the out-of-round deformation of the cylindrical shell enhances the uplift displacement by denting a part of cylindrical shell. The second scale tank model has the multi-stage stiffeners on its cylindrical shell to prevent its out-of-round deformation during the shaking table test. The primary purpose of the second test is to verify applicability of the explicit finite element analysis for analyzing the tank rocking motion. The time history of the uplift displacement of the tank base during a seismic excitation is measured and compared with that computed by the explicit finite element analysis. The comparison shows that the explicit finite element analysis adequately reproduces the tank rocking behavior.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Anthony Simons ◽  
Gideon Quartey ◽  
Nathaniel Frimpong Asante

In the overhauling of the internal combustion engine, a lot of tools are used and among them is the poppet valve spring compressor. In Ghana, auto mechanics at the “way-side” garages make use of improvised tools, such as pipes, pliers, and push rods, for compressing valve springs. However, there are some challenges associated with the usage of these tools which include misplacement of cotters, injuries, and sometimes valve bends. In this work, a review of some of the existing designs of the improvised tools was considered. Also, a survey was conducted to seek the opinion of users (auto technicians and/or mechanics) of the tools. A design was made for spring compression by incorporating a magnet with a pull force of 679.78 N to take care of the removal of cotters during valve assembly dismantling. In this research, an efficient and user-friendly poppet valve spring compression tool with a total mass of 0.88 kg was designed. Finite element analysis (FEA) was performed on the upper and lower parts of the tool to examine its response due to the loads that act on it during operation. It was discovered from the analysis that the upper frame of the valve spring compressor experienced the highest von Mises stress of 59.77 MPa at the neck region, whilst the corresponding fatigue analysis showed a maximum fatigue life of 8.355 × 109 cycles.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zhifang Wei ◽  
Xiaolian Zhang ◽  
Yecang Hu ◽  
Yangyang Cheng

Recoil spring is a key part in automatic or semi-automatic weapons re-entry mechanism. Because the stranded wire helical spring (SWHS) has longer fatigue life than an ordinary single-wire cylindrically helical spring, it is often used as a recoil spring in various weapons. Due to the lack of in-depth research on the dynamic characteristics of the current multi-wire recoil spring in recoil and re-entry processes, the fatigue life analysis of the current multi-wire recoil spring usually only considers uniform loading and does not consider dynamic impact loads, which cannot meet modern design requirements. Therefore, this paper proposes a research method for fatigue life prediction analysis of multi-wire recoil spring. Firstly, based on the secondary development of UG, a three-wire recoil spring parameterized model for a gun is established. Secondly, ABAQUS is used to carry out a finite element analysis of its dynamic response characteristics under impact, and experimental verification is performed. Then, based on the stress-time history curve of the dangerous position obtained by finite element analysis, the rain flow counting method is used to obtain the fatigue stress spectrum of recoil spring. Finally, according to the Miner fatigue cumulative damage theory, the fatigue life prediction of the recoil spring based on the S-N curve of the material is compared with experimental results. The research results show that the recoil spring has obvious transient characteristics during the impact of the bolt carrier. The impact velocity is far greater than the propagation speed of the stress wave in the recoil spring, which easily causes the spring coils to squeeze each other. The maximum stress occurs at the fixed end of the spring. And the mean fatigue curve (50% survival rate) is used to predict the life of the recoil spring. The calculation result is 8.6% different from the experiment value, which proves that the method has certain reliability.


Sign in / Sign up

Export Citation Format

Share Document