Information Network of C-L PLM Based on the Internet of Things

2011 ◽  
Vol 421 ◽  
pp. 499-502
Author(s):  
Yong Shun Luo ◽  
Yong Yang ◽  
Yu Zhong Li ◽  
Xiao Jun Wang

Closed-Loop PLM is the development direction of product management in the future. Network platform is the indispensable means for realizing closed-loop. It could be concluded that the Internet Things can be the network platform of C-L PLM by analyzing the circulation data, data distribution, and hardware and software configuration. The connection method of EPCglobal network and C-L PLM was designed, based on analyzing them belonging to the same standard frame.

2013 ◽  
Vol 336-338 ◽  
pp. 2512-2515
Author(s):  
Li Min Liu

The internet of things is a foundation for connecting things, sensors, actuators, and other smart technologies, thus enabling person-to-object and object-to-object communications. Its applications are concerned to emergency response, intelligent shopping, smart product management, smart meters, home automation, waste management, sustainable urban environment, continuous care and so on. As automatic identification sensor, RFID is a foundational component for the internet of things. In this paper, internet of things, RFID and technical analysis for IoT and RFID are discussed.


Author(s):  
Anthony D’Angelo ◽  
Edwin K. P. Chong

This paper establishes the baseline for incorporating the Internet of Things (IoT) into the Reliability-Risk model. The authors developed the original Reliability-Risk model as a “trade-off” tool for ranking conceptual designs as a function of reliability. We summarize the original Reliability-Risk model and algorithm and discuss the process of updating the standard Integration Definition Function Modeling (IDEF0) technique with the IoT. Inserting the updated IDEF0 into the Reliability-Risk modeling framework creates a dynamic closed-loop system. We identified a concept for using a probabilistic workflow to automate the new closed-loop system and discuss a Reliability-Risk sensitivity approach. The Reliability-Risk model ranked five conceptual packaging designs against 17 criteria for incorporation into the supply chain. The authors use a Multi-Criteria-Decision System (MCDS) to establish the rankings. The paper re-visits the original example to include data (the IoT) such as shock, temperature, and humidity obtained from various nodes in the logistics cycle. After the sensor data are incorporated, updated systems specification and reliability models resulted in a new ranking. We will discuss the results of the rankings. Current research in developing the Digital Twin and Digital Thread are lacking in the area of logistics modeling. The incorporation of Discrete Event Simulation models to simulate transportation, handling, and storage shows promise to address these shortcomings. Therefore, we will briefly discuss our approach on incorporating Discrete Event Simulation modeling into the Reliability-Risk-IoT model to create a “logistics twin.”


Author(s):  
Ahmed Mahmoud Mostafa

The Internet of Things (IoT) is defined by the International Telecommunication Union (ITU) and IoT European Research Cluster (IERC) as a dynamic global network infrastructure with self-configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes and virtual personalities, use intelligent interfaces and are seamlessly integrated into the information network. Many of the applications and use cases that drive the requirements and capabilities of 5G are about end-to-end communication between devices. This chapter describes the enabling technologies for the Internet of Things, the IoT architecture, the network and communication infrastructure for IoT, and the importance of scalability for 5G based IoT systems. Also, naming and addressing issues in IoT is presented along with an overview of the existing data exchange protocols that can be applied to IoT based systems.


Sign in / Sign up

Export Citation Format

Share Document