Generating STEP-NC Files for a Circuit Board Milling System

2012 ◽  
Vol 430-432 ◽  
pp. 1686-1691
Author(s):  
Ke Wang ◽  
Cheng Rui Zhang ◽  
Ri Liang Liu ◽  
Xiang Zhi Zhang

Since G-codes have been proved limiting the modern manufacturing industry, ISO14649 was put forward. This paper presents a solution to generate ISO14649 files for circuit board milling. The process planning is given, and all the processes needed are contained in the ISO14649 file. Features and machining operations are identified for each process, such as the closed pocket having a “General_closed_profile” attribute and bosses, round holes, slots, the planar face, contour parallel strategy, contour bidirectional strategy and etc. The scenario of one feature with multi tools are put forward to promote the milling efficiency and an entity “Combined_Machining_workingsteps” is proposed. Besides, some other extensions are made, such as entities for representing circuit geometries in machining features. Algorithms for tool paths generation are demonstrated for contour parallel milling and bidirectional milling, where a new algorithm based on pixels is used. The new algorithm can be used in other functions such as detecting uncut regions.

Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 61
Author(s):  
Trung Kien Nguyen ◽  
Lan Xuan Phung ◽  
Ngoc-Tam Bui

In the modern manufacturing industry, the role of computer-aided process planning (CAPP) is becoming increasingly crucial. Through the application of new technologies, experience, and intelligence, CAPP is contributing to the automation of manufacturing processes. In this article, the integration of a proposed CAPP system that is named as BKCAPP and G-code generation module provides a completed CAD–CAPP–CNC system that does not involve any manual processing in the CAM modules. The BKCAPP system is capable of automatically performing machining feature and operation recognition processes from design features in three-dimensional (3D) solid models, incorporating technical requirements such as the surface roughness, geometric dimensions, and tolerance in order to provide process planning for machining processes, including information on the machine tools, cutting tools, machining conditions, and operation sequences. G-code programs based on macro programming are automatically generated by the G-code generation module on the basis of the basic information for the machining features, such as the contour shape, basic dimensions, and cutting information obtained from BKCAPP. The G-code generation module can be applied to standard machining features, such as faces, pockets, bosses, slots, holes, and contours. This novel integration approach produces a practical CAPP method enabling end users to generate operation consequences and G-code files and to customize specific cutting tools and machine tool data. In this paper, a machining part consisting of basic machining features was used in order to describe the method and verify its implementation.


2017 ◽  
Vol 11 (2) ◽  
pp. 242-250 ◽  
Author(s):  
Kenta Koremura ◽  
◽  
Yuki Inoue ◽  
Keiichi Nakamoto

In the manufacturing industry, there is an urgent need to shorten the manufacturing lead time of products. Therefore, optimizing process planning is essential to realize high efficiency machining. In this study, in order to develop a computer aided process planning (CAPP) system using previously proposed machining features, a prediction method for some process evaluation indices is proposed. Many candidates for the machining process exist, depending on the recognized machining features in a previous study. Therefore, by using these indices, operators can select a suitable process from among these candidates according to their ideas. Case studies of process planning are conducted to confirm that the operator’s strategy affects the selection of the machining process candidates. From the case study results, it is found that the proposed process evaluation indices have potential use in determining the machining process utilized, and are suitable for a flexible CAPP system of multi-tasking machine tools.


Author(s):  
Dong He ◽  
Yamin Li ◽  
Zhaoyu Li ◽  
Kai Tang

Abstract A critical task in multi-pass process planning for five-axis machining of complicated parts is to determine the intermediate surfaces for rough machining. Traditionally, the intermediate surfaces are simply parallel Z-level planes, and the machining is of the simplest three-axis type. However, for complicated parts, this so-called Z-level method lacks flexibility and causes isolated islands on layers, which require extraneous air movements by the tool. Moreover, the in-process workpiece machined according to the Z-level method suffers from the staircase effect, which often induces unstable dynamic problems on the tool-spindle system. In this paper, we propose a new method of planning a five-axis machining process for a complicated freeform solid part. In our method, the intermediate surfaces are no longer planar but curved, and they are intrinsically influenced by the convex hull of the part. The powerful algebraic tool of geodesic distance field is utilized to generate the desired intermediate surfaces, for which collision-free five-axis machining tool paths are then planned. In addition, we propose a novel idea of alternating between the roughing and finishing machining operations, which helps improve the stiffness of the in-process workpiece. Ample physical cutting experiments are performed, and the experimental results convincingly confirm the advantages of our method.


Author(s):  
Laurent Sabourin ◽  
François Villeneuve

Abstract This article presents the validation of a part analysis method for the creation of a process planning system for automobile prototype activity at the PSA group. The methodology presented is founded upon the division of the problem into two semi-separate sub-fields. The first consists in automatically defining the operation sequences, by the association between functional and machining features. The second one defines the sequencing of machining operations in set ups, founded upon a constraint planning strategy. The methods developed in this article have been implemented as an expert system named OMEGA.


2001 ◽  
Vol 1 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Madhumati Ramesh ◽  
Derek Yip-Hoi ◽  
Debasish Dutta

Exploiting shape similarities amongst parts for applications such as variant process planning is well known in the manufacturing industry. This particular application requires a mechanism for retrieval of similar parts from a part database which in turn requires a method for shape similarity measurement. In this paper, such a method is presented. First, the part is decomposed into simpler shapes resembling machining features. The decomposition method makes use of primitives to generate the shapes directly unlike previous methods in which the shapes are produced by combining minimal cells. Next, part characteristics that capture the spatial and dimensional relationships amongst features are used to measure the similarity. These characteristics are relevant to machining and they complement the characteristics such as feature type and feature intersections that are used by the previous shape comparison techniques. Implementation and examples are also included.


Author(s):  
Zezhong C. Chen ◽  
Xujing Yang

Extensive research on G1 biarcs fitting to free-form curves (i.e., Bezier, B-spline, and NURBS curves) has been conducted in the past decades for various purposes, including CNC contouring to make smooth, accurate profile features such as pockets, islands, and sides. However, all the proposed approaches only focused on the approximation errors and the biarc number, not on the radius of the individual fitting arc; so it could be smaller than the cutting tool, which would cause gouging during machining. This work, based on the tool radius pre-determined by the minimum size of the concavities of the design profile, proposes a new approach to approximating the profile with a G1 biarc curve in order to make smooth, accurate, and non-gouged profile features using CNC contouring. The significant new contribution of this work is a new mechanism that ensures all the concave arcs of the fitting curve are larger than the pre-determined tool and the fitting errors meet the specified tolerance. This approach can promote the use of G1 biarc tool paths in the manufacturing industry to make high precision profile features.


Author(s):  
Arun Unnikrishnan ◽  
P. V. M. Rao

Continuous need to increase productivity and reliability in machining has led to high-performance machines that are often characterized by high energy demands. As a result, energy minimization is identified as one of the key goals in machining. With the availability of improved predictive models for energy estimation in machining, energy-conscious process planning for machining is now possible. The present work focuses on the assessment of process plans of machined parts from energy consumption point of view. An experimentally validated model for energy estimation is first presented. Using this model two important process planning variables on energy consumption in machining has been studied. Firstly selection of tool paths including curvilinear tool paths has been considered from energy consumption point of view. Secondly, strategies for the selection of cutting parameters for roughing, semi-finishing and finishing from energy consumption perspective are discussed.


Sign in / Sign up

Export Citation Format

Share Document