Retaining Structure Design and Residential Energy-Saving Research

2012 ◽  
Vol 430-432 ◽  
pp. 466-469
Author(s):  
Jun Zhou Huang ◽  
Jian Hua Wang

Based on the theories, , and we can improve , the heat transfer resistance of retaining structure, or reduce ,the heat transfer coefficient, through the heat insulation design of outer wall, roof, ground, the door, and outer window and the thermal bridge, and finally realize the building energy conservation goals. Residential energy consumption is a important factor of China's energy saving. Exterior wall, roof, ground, the door, the external window and thermal bridge is the key parts of energy consumption of residential building.

2013 ◽  
Vol 448-453 ◽  
pp. 1269-1272
Author(s):  
Zhao Chen ◽  
Li Bai ◽  
Feng Li

In this paper, the software of DeST was used to simulate the heating energy consumption by the year of a typical energy-saving residential building in the city of Changchun. Comparing the energy consumption of the top and bottom,the middle room and the edges rooms ,we get the reasons for the uneven heating and put forward the corresponding solutions, which provide the reference for heating system design.


2021 ◽  
Vol 11 (1) ◽  
pp. 39-45
Author(s):  
Yuri S. VYTCHIKOV ◽  
Mikhail E. SAPAREV ◽  
Vladislav A. GOLIKOV ◽  
Evgeniy G. SAFRONOV

The article presents a method for determining the minimum permissible value of the heat transfer resistance of the outer wall, at which the minimum energy consumption is achieved during the operation of buildings with variable thermal conditions. A review of the sources devoted to this problem showed the presence of high costs of thermal energy during the heating of premises. On the basis of studies of all components of energy consumption in the operation of premises with intermitt ent heating systems, the authors of the article propose a method for determining the minimum permissible resistance to heat transfer, which provides minimum energy consumption. According to the described method, the calculation was made for external walls made of various materials. The analysis of the obtained results showed that a signifi cant infl uence on the minimum permissible value of the heat transfer resistance is exerted by a complex of thermophysical values cρλ. The presented graphical dependence R0 усл on the complex cρλ allows the designer to rationally choose a wall material that provides a minimum of energy consumption during the operation of the building. In the context of rising energy tariff s, such optimization of thermal protection characteristics is especially important for country cott ages operated in intermitt ent heating conditions.


2011 ◽  
Vol 71-78 ◽  
pp. 655-658
Author(s):  
Rong Qin

There are six basic control items, land saving, energy saving, water saving, material saving, indoor environment and operation, among which, only material saving are related to structure design. We followed the green building design concept and the control items list in those standards during structure design of one of the residential area in Sino-Singapore Tianjin Eco-city, which consist of 15~18-story residential building connected to a large underground garage, as is shown below.


Designs ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 42 ◽  
Author(s):  
Ebrahim Solgi ◽  
Zahra Hamedani ◽  
Shahab Sherafat ◽  
Ruwan Fernando ◽  
Farshid Aram

The continuing importance of energy conservation in the building sector has drawn major attention to energy audits of existing buildings in different climates. In this paper, the energy conservation potential of a residential building located in Iran’s cold climate was investigated through an analysis of its actual energy consumption and through computer simulation. The building base-load was determined using a linear regression method based on existing energy bills, and was used to validate the computer simulation of its energy usage. The impact of typical energy saving solutions was evaluated for three cost refurbishment scenarios: low, medium and high. The results show that the existing construction and envelope materials fail to meet the national standards of Iran, but insulating the envelope was found to be a more cost-effective measure than modifying the windows. The results also demonstrate that although the use of energy-saving solutions has a significant impact on energy consumption, even the most economic solutions investigated will have a payback period longer than one decade. Thus, with current energy prices the reviewed energy conservation strategies are not economically justified in Iran from the consumer perspective, as investment in the methods considered typical in other parts of the world will not show a return for at least a half-century.


2011 ◽  
Vol 225-226 ◽  
pp. 239-242 ◽  
Author(s):  
Hong Lei Ma ◽  
Jian Hui Niu

An energy saving residential building in Zhangjiakou was took as research object, which was designed and constructed according to the criterion of 65% energy saving of the third stage, utilizing simulation software Dest, which was developed by Qinghua University, energy consumption simulation and economic analysis were done to the building. The results show that compared with the former residence which was built according to the non-energy saving design, the implementation of new design standard for building energy saving can not only achieve better energy saving effect, but also its payback period is short, so the new design standard for building energy saving is worth spreading.


2011 ◽  
Vol 280 ◽  
pp. 147-151 ◽  
Author(s):  
Hong Guo ◽  
Min Fang Su ◽  
Xiao Jun Jin

Based on the current energy consumption situation of existing masonry-concrete residential buildings in China, it discussed the main energy-saving renovation policies and technologies. Taking existing masonry-concrete residential building of Taiyuan city as a case, it analyzed its heat loss situations, energy-saving renovation design and reconstruction technologies of building envelope. It discussed energy-saving renovation effects. Energy efficiency and indoor thermal environment improved significantly after energy-saving renovation. The building life is extended.


2011 ◽  
Vol 243-249 ◽  
pp. 6938-6941
Author(s):  
Xiao Tong Peng ◽  
Chen Lin

An on-site test on envelope of a typical steel residential building in cold region is performed. The testing results provide evaluation bases for the energy-saving effects of the steel residential building. In order to evaluate the main factors that influence energy dissipation of the building and estimate the main energy dissipation positions, the heat transfer coefficient K of envelope and its actual energy consumption are calculated based on the testing data. The results indicate that the building envelope has good heat storage property and it could keep indoor thermal stability; the steel frames and windows have heat bridge effects. Through calculations of the energy consumption of envelope, it is showed that the tested building only meet the requirement of energy saving by 50%, instead of 65%; the external walls and windows are main energy dissipation parts. Finally the thermal design recommendations about steel residential buildings are proposed.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Naim Jabbour

Data shows residential energy consumption constituting a significant portion of the overall energy end use in the European Union (EU), ranging between 15% and 30%. Furthermore, the EU’s dependency on foreign fossil fuel-based energy imports has been steadily increasing since 1993, constituting approximately 60% of its primary energy. This paper provides an analytical re-view of diverse residential building/energy policies in targeted EU countries, to shed insight on the impact of such policies and measures on energy use and efficiency trends. Accordingly, the adoption of robust residential green and energy efficient building policies in the EU has increased in the past decade. Moreover, data from EU energy efficiency and consumption databases attributes 44% of total energy savings since 2000 to energy upgrades and improvements within the residential sector. Consequently, many EU countries and organizations are continuously evaluating residential building energy consumption patterns to increase the sec-tor’s overall energy performance. To that end, energy efficiency gains in EU households were measured at 1% in 2000 compared to 27.8% in 2016, a 2600% increase. Accordingly, 36 policies have been implemented successfully since 1991 across the EU targeting improvements in residential energy efficiency and reductions in energy use. Moreover, the adoption of National Energy Efficiency Actions Plans (NEEACP) across the EU have been a major driver of energy savings and energy efficiency. Most energy efficiency plans have followed a holistic multi-dimensional approach targeting the following areas, legislative actions, financial incentives, fiscal tax exemptions, and public education and awareness programs and campaigns. These measures and policy instruments have cumulatively generated significant energy savings and measurable improvements in energy performance across the EU since their inception. As a result, EU residential energy consumption trends show a consistent decrease over the past decade. The purpose of this analysis is to explore, examine, and compare the various green building and energy-related policies in the EU, highlighting some of the more robust and progressive aspects of such policies. The paper will also analyze the multiple policies and guidelines across targeted European nations. Lastly, the study will assess the status of green residential building policies in Lebanon, drawing from the comprehensive European measures, in order to recommend a comprehensive set of guidelines to advance energy policies and building practices in the country. Keywords: Building Policies; Residential Energy Patterns; Residential Energy Consumption; Energy Savings


2012 ◽  
Vol 608-609 ◽  
pp. 1246-1251
Author(s):  
Li Bai ◽  
Zhao Chen ◽  
Jia Rui Chu

This paper uses energy consumption stimulation software DeST-h to carry out stimulation study on annual energy consumption for heating of a typical residential building in Changchun city, a city in frigid area. We respectively calculated energy consumption under conditions of implementing “50% energy-saving standard” and “65% energy-saving standard”, calculated the energy-saving rate, and did research on energy-saving ability, economy, emission-reducing ability of different energy-saving standards.


2012 ◽  
Vol 193-194 ◽  
pp. 121-124
Author(s):  
Ya Jun Wu ◽  
Xue Ying Wang ◽  
Dong Xu

In the cold regions of northern China, compared to the urban residential buildings, the rural residential buildings are lack of energy-saving technology, which currently in its infancy, some places even still blank, this does not meet China's energy conservation policy, is not conducive to the sustainable development of the country. For this reason, this paper is focused on rural residential building, starting from environmental analysis and technical measures, analyzed on rural residential energy-saving design, and also make research and discussion in terms of building sitting and planning, shape and layout of the building, building structure and technology.


Sign in / Sign up

Export Citation Format

Share Document