High Performance Arbitrary Amplitude and Phase of Voltage Sags and Swells Generator with Series Injected Inverter by d-, q-Axis Controlled

2012 ◽  
Vol 433-440 ◽  
pp. 7195-7199
Author(s):  
Phongphat Tawanwongsri ◽  
Bunlung Neammanee

Voltage sags and swells are the most common types of power quality disturbances. Often, voltage sags and swells caused by electrical fault in the power system. This allows devices that are installed in the power system damage. Therefore, we have generated voltage sags and swells to simulate events that occur in power systems for virtual reality. In this paper, voltage sags and swells generator (SSG) using the principles by d-, q-axis can be arbitrary control of the magnitude and phase of the injection voltage. The simulation results can confirm, the SSG can generate the arbitrary voltage sags/swells with in phase, phase lead or phase lag.

2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


2019 ◽  
Vol 2 (2) ◽  
pp. 17 ◽  
Author(s):  
A. H. Gomaa Haroun ◽  
Yin-Ya Li

Load frequency control (LFC) is considered to be the most important strategy in interconnected multi-area power systems for satisfactory operation and distribution. In order to transfer reliable power with acceptable quality, an LFC mechanism requires highly efficacy and intelligent techniques. In this paper, a novel hybrid fractional order fuzzy pre-compensated intelligent proportional-integral-derivative (PID) (FOFP-iPID) controller is proposed for the LFC of a realistic interconnected two-area power system. The proposed FOFP-iPID controller is incorporated into the power system as a secondary controller. In doing so, the parameters of the suggested FOFP-iPID controller are optimized using a more recent evolutionary computational technique called the Ant lion optimizer (ALO) algorithm utilizing an Integral of Time multiplied Absolute Error (ITAE) index. Simulation results demonstrated that the proposed FOFP-iPID controller achieves better dynamics performance under a wide variation of load perturbations. The supremacy of the proposed FOFP-iPID controller is demonstrated by comparing the results with some existing controllers, such as fractional order PID (FOPID) and fractional order intelligent PID (FOiPID) controllers for the identical system. Finally, the sensitivity analysis of the plant is examined and the simulation results showed that the suggested FOFP-iPID controller is robust and performs satisfactorily despite the presence of uncertainties.


2012 ◽  
Vol 433-440 ◽  
pp. 7183-7189
Author(s):  
Mohammad Moradzadeh ◽  
René Boel

This two-part paper deals with the coordination of the control actions in a network of many interacting components, where each component is controlled by independent control agents. As a case study we consider voltage control in large electric power systems where ever-increasing pressures from the liberalization and globalization of the electricity market has led to partitioning the power system into multiple areas each operated by an independent Transmission System Operator (TSO). Coordination of local control actions taken by those TSOs is a very challenging problem as poorly coordinated operation of TSOs may endanger the power system security by increasing the risk of blackouts. This second part of the paper presents simulation results on a 12-bus 3-area test system, using the distributed model predictive control paradigm in order to design a coordinating model-based feedback controller. Coordination requires that each agent has some information on what the future evolution of its power flows to and from its neighbors will be. It will be shown that how the communication between agents can avoid voltage collapse in circumstances where classical uncoordinated controllers fail.


2012 ◽  
Vol 2012 ◽  
pp. 1-19
Author(s):  
G. Ozdemir Dag ◽  
Mustafa Bagriyanik

The unscheduled power flow problem needs to be minimized or controlled as soon as possible in a deregulated power system since the transmission systems are mostly operated at their power-carrying limits or very close to it. The time spent for simulations to determine the current states of all the system and control variables of the interconnected power system is important. Taking necessary action in case of any failure of equipment or any other occurrence of an undesired situation could be critical. Using supercomputing facilities and parallel computing techniques together decreases the computation time greatly. In this study, a parallel implementation of a multiobjective optimization approach based on both genetic algorithms and fuzzy decision making to manage unscheduled flows is presented. Parallel computation techniques are applied using supercomputers (high-performance computers). The proposed method is applied to the IEEE 300 bus test system. Two different cases for some parameters of GA are considered to see the power of parallel computation technique. Then the simulation results are presented.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2601
Author(s):  
Mohammad Reza Salehizadeh ◽  
Mahdi Amidi Koohbijari ◽  
Hassan Nouri ◽  
Akın Taşcıkaraoğlu ◽  
Ozan Erdinç ◽  
...  

Exposure to extreme weather conditions increases power systems’ vulnerability in front of high impact, low probability contingency occurrence. In the post-restructuring years, due to the increasing demand for energy, competition between electricity market players and increasing penetration of renewable resources, the provision of effective resiliency-based approaches has received more attention. In this paper, as the major contribution to current literature, a novel approach is proposed for resiliency improvement in a way that enables power system planners to manage several resilience metrics efficiently in a bi-objective optimization planning model simultaneously. For demonstration purposes, the proposed method is applied for optimal placement of the thyristor controlled series compensator (TCSC). Improvement of all considered resilience metrics regardless of their amount in a multi-criteria decision-making framework is novel in comparison to the other previous TCSC placement approaches. Without loss of generality, the developed resiliency improvement approach is applicable in any power system planning and operation problem. The simulation results on IEEE 30-bus and 118-bus test systems confirm the practicality and effectiveness of the developed approach. Simulation results show that by considering resilience metrics, the performance index, importance of curtailed consumers, congestion management cost, number of curtailed consumers, and amount of load loss are improved by 0.63%, 43.52%, 65.19%, 85.93%, and 85.94%, respectively.


2014 ◽  
Vol 494-495 ◽  
pp. 229-233 ◽  
Author(s):  
Hong Wang ◽  
Feng Chun Sun

Hybrid power systems provide high-performances and high-efficiency power for electric bulldozer. This paper firstly constructs the mathematical model of driving motors system based on the design of dual-motor-driving propulsion system for bulldozer. Secondly, by using the setting values from a bulldozer, simulation work is implemented, and parameters of the hybrid power system are matched, and finally, based on MATLAB/Simulink ,dynamic models for the dual-motor-driving hybrid power system is established, and the simulation results are discussed. Simulation results demonstrate the validity of the hybrid power system model and the matching of the parameters of the hybrid power system is reasonable.


2012 ◽  
Vol 433-440 ◽  
pp. 2850-2855
Author(s):  
Lei Shi ◽  
Xiang Ning Xiao

In this paper, power system electromagnetic and electromechanical transient hybrid real-time simulation technology is expounded in details, which has advantages of the electromagnetic transient simulation program and electromechanical ones. The more details needed to analyze the dynamic characteristics of power systems are provided by this hybrid simulation technology, and the scale of power system simulated is not limited in the hybrid simulation program. The hybrid simulation program is applied to analyze the power system subsynchronous oscillation problem occurred in a power plant with 4 turbine generators located in the northwestern China. According to the simulation results, it is clear that the stability of generators is threatened by the subsynchronous oscillations caused by capacitor series compensation in the transmission line connecting the power plant and the load center system. In meantime, the effectiveness of the countermeasure is validated simultaneously by the hybrid simulation results.


2012 ◽  
Vol 605-607 ◽  
pp. 819-823
Author(s):  
Li Pin Chen ◽  
Xian Yong Xiao ◽  
Ying Wang ◽  
Jian Jiao

When faults happen to the power system components, the duration of voltage sags is determined by the cooperation of protection system. Many literatures have been done in analyzing the factors which influence the magnitude of voltage sags, but the impact of protection cooperation on sag duration is not considered by existing studies. In order to estimate the duration of voltage sags more precisely, the novelty of the proposed approach is in probabilistic modeling of the cooperation of the protection system using the concept of Markov state space, then voltage sag frequency and sensitive equipment trips considering protection cooperation can be estimated by utilizing the configuration and setting value of the protection system. The proposed method was applied to the IEEE 57-bus test system, and the simulation results show that the proposed method is practical, simple and adaptive.


2014 ◽  
Vol 668-669 ◽  
pp. 462-465
Author(s):  
Zhi Min Li ◽  
Xin Yang Deng ◽  
Xiao Ming Mou ◽  
Shuang Rong ◽  
Tian Kui Sun ◽  
...  

A novel robust control scheme for decentralized generator excitation and valve coordinated control systems to improve power system stability is proposed. By utilizing generator terminal voltage magnitude and phase angle to represent the interactions among generators, decentralized generator excitation and valve coordinated control in multi-machine power systems is achieved. The control is realized by robust parametric approach. Simulation results show that the proposed robust parametric coordinated control can improve power system stability.


Author(s):  
Balasim M. Hussein

<p>The balance of the power supply and demand (frequency control) is one of the most ancient approaches for the power systems, which is considered as a highly complex system.The power systems frequency response is a perfect indicator of the resilience to the multi-disturbances. In this work, the fuzzy logichas been scaledusing PSO segmentation (SePSO) and suggested to get high performance of frequency stability. PSO has participated into multi-segments for calculating the scald-fuzzy membership with basic rules. Two identical interconnectedpower areas wereselected to exam the new scaled fuzzy method. The time response of the results has undertaken the effectiveness of the controller reactionusing the MATLAB Simulink. The work feed back proved that the proposed SePSO optimization for the controlhas significantly faster with low undershot concerningthe classical controllers in differenttime schedules and disturbance values.</p>


Sign in / Sign up

Export Citation Format

Share Document