Probabilistic Critical Fatigue Safety State of the RD2 Type Axle of China Railway Freight Car

2008 ◽  
Vol 44-46 ◽  
pp. 751-758 ◽  
Author(s):  
Yong Xiang Zhao ◽  
Bing Yang ◽  
Ming Fei Feng ◽  
Y. Li ◽  
M.J. Liu ◽  
...  

Critical fatigue safety state is investigated on RD2 type axle of China railway freight cars. Attention is paid on the grooves near axle boxes, where more fatigue cracks were early appeared even result in at least six derailed accidents. Load history was obtained by vehicle dynamics simulation combining with on-line inspection. Braking loads and effects of maintenance and off-round of wheels are also incorporated. Semi-elliptical and external circumferential cracks are employed for crack growth simulation. Crack shape change and shear stressing of the semi-elliptical crack are taken into account. New crack growth rate modeling in which covers from cracking threshold to toughness related fracture state is applied for residual life evaluation. Critical fatigue safety state is defined as the crack size from which the axle can be safely operated to next overhaul inspection. Critical crack size is estimated step-by-step with the crack shape change. Results show that the external circumferential crack is more dangerous than the semi-elliptical crack. Application more than two years in production verifies that the present assessment is available and reliable.

2009 ◽  
Vol 113 (1150) ◽  
pp. 775-788 ◽  
Author(s):  
A. C. Cobb ◽  
J. E. Michaels ◽  
T. E. Michaels

Abstract Ultrasonic nondestructive evaluation methods are routinely used to detect and size fatigue cracks near fastener holes in aircraft structures as a part of scheduled maintenance. In contrast, statistical crack propagation models provide an estimate of the expected fatigue life assuming a known crack size and future fatigue loadings. Here an integrated approach for in situ diagnosis and prognosis of fastener hole fatigue cracks is proposed and implemented that incorporates both ultrasonic monitoring and crack growth laws. The sensing method is an ultrasonic angle beam technique, and cracks are automatically detected from the ultrasonic response. An extended Kalman filter is applied to combine ultrasonically estimated crack sizes with a crack growth law, effectively using the time history of the ultrasonic results rather than only the most recent measurement. A natural extension of this method is fatigue life prognosis. Results from fatigue tests on 7075-T651 aluminium coupons show improved crack size estimates as compared to those obtained from ultrasonic measurements alone, and also demonstrate the capability of predicting the remaining life. This approach for fatigue crack detection, sizing and prognosis is an example of a general strategy for in situ monitoring of structural damage whereby improved results are achieved from the integration of noisy measurements with imperfect crack growth models.


2012 ◽  
Vol 157-158 ◽  
pp. 202-209
Author(s):  
Marina Kutin ◽  
Ivana Vasovic ◽  
Mirko Maksimovic ◽  
Marko Ristic

The most important characteristics for service safety of complex metal structures are those describing crack initiation and growth caused by static or dynamic, variable loading. Crack initiation and growth is subject of numerous investigations by different methods. The paper shows the possibility of applying infrared thermography to the problems of fracture mechanics. The main aim of testing was to qualitative relate the temperature changes of the spacemen measured by infrared thermography with the evaluation of fatigue cracks in steel specimen. Based on the distribution of temperature on the surface of the sample, during the action of force, the spread of plastic zones and crack tip are determined. The increase of temperature produced by the plastic deformation at the crack tip has been measured by infrared camera Thermal CAM SC640, FLIR Systems. SE(B) specimens were tested in three-point bending (TPB), following the procedures of ASTM E1820, on electrical mechanical testing machine with crack tip opening displacement (CTOD) control, at room temperature. Numerical simulation of stress distribution on the same model under same condition is presented, too. The results showed that thermography is a method suitable for monitoring and prediction of crack initiation and growth, as well as critical stress in elastic and elastic-plastic deformations. Fatigue crack growth behaviour of cracked TPB specimen made of S355 J2 G3 steel using Paris relation is considered.


2013 ◽  
Vol 586 ◽  
pp. 19-22
Author(s):  
Ivo Černý

Different experimental methods are being used in laboratories for automatic measurement of fatigue crack growth rates and threshold values. Such data belong to mechanical properties essential for an assessment of residual life of components and structures containing cracks of length more than several millimetres. However, if the material contains small crack-like defects like inclusions or pores, knowledge about local resistance against fatigue growth of physically short cracks becomes very important. Damage mechanisms are even more complicated in case of a presence of subsurface residual stress field, e.g. due to technological effects. Experimental difficulties connected with investigation of short fatigue crack growth (FCG) can be reduced in case of use of automatic indirect methods. The aim of the work described in this paper was to explore possibilities and limits of the use of DCPD (direct current potential drop) method for physically short crack measurement and to use the optimised method for an evaluation of local damage process of initiation and early growth of short fatigue crack in residual stress field induced by shot peening.


Author(s):  
Gustavo Henrique B. Donato ◽  
Felipe Cavalheiro Moreira

Fracture toughness and Fatigue Crack Growth (FCG) experimental data represent the basis for accurate designs and integrity assessments of components containing crack-like defects. Considering ductile and high toughness structural materials, crack growing curves (e.g. J-R curves) and FCG data (in terms of da/dN vs. ΔK or ΔJ) assumed paramount relevance since characterize, respectively, ductile fracture and cyclic crack growth conditions. In common, these two types of mechanical properties severely depend on real-time and precise crack size estimations during laboratory testing. Optical, electric potential drop or (most commonly) elastic unloading compliance (C) techniques can be employed. In the latter method, crack size estimation derives from C using a dimensionless parameter (μ) which incorporates specimen’s thickness (B), elasticity (E) and compliance itself. Plane stress and plane strain solutions for μ are available in several standards regarding C(T), SE(B) and M(T) specimens, among others. Current challenges include: i) real specimens are in neither plane stress nor plane strain - modulus vary between E (plane stress) and E/(1-ν2) (plane strain), revealing effects of thickness and 3-D configurations; ii) furthermore, side-grooves affect specimen’s stiffness, leading to an “effective thickness”. Previous results from current authors revealed deviations larger than 10% in crack size estimations following existing practices, especially for shallow cracks and side-grooved samples. In addition, compliance solutions for the emerging clamped SE(T) specimens are not yet standardized. As a step in this direction, this work investigates 3-D, thickness and side-groove effects on compliance solutions applicable to C(T), SE(B) and clamped SE(T) specimens. Refined 3-D elastic FE-models provide Load-CMOD evolutions. The analysis matrix includes crack depths between a/W=0.1 and a/W=0.7 and varying thicknesses (W/B = 4, W/B = 2 and W/B = 1). Side-grooves of 5%, 10% and 20% are also considered. The results include compliance solutions incorporating all aforementioned effects to provide accurate crack size estimation during laboratory fracture and FCG testing. All proposals revealed reduced deviations if compared to existing solutions.


2006 ◽  
Vol 13-14 ◽  
pp. 23-28 ◽  
Author(s):  
C.K. Lee ◽  
Jonathan J. Scholey ◽  
Paul D. Wilcox ◽  
M.R. Wisnom ◽  
Michael I. Friswell ◽  
...  

Acoustic emission (AE) testing is an increasingly popular technique used for nondestructive evaluation (NDE). It has been used to detect and locate defects such as fatigue cracks in real structures. The monitoring of fatigue cracks in plate-like structures is critical for aerospace industries. Much research has been conducted to characterize and provide quantitative understanding of the source of emission on small specimens. It is difficult to extend these results to real structures as most of the experiments are restricted by the geometric effects from the specimens. The aim of this work is to provide a characterization of elastic waves emanating from fatigue cracks in plate-like structures. Fatigue crack growth is initiated in large 6082 T6 aluminium alloy plate specimens subjected to fatigue loading in the laboratory. A large specimen is utilized to eliminate multiple reflections from edges. The signals were recorded using both resonant and nonresonant transducers attached to the surface of the alloy specimens. The distances between the damage feature and sensors are located far enough apart in order to obtain good separation of guided-wave modes. Large numbers of AE signals are detected with active fatigue crack propagation during the experiment. Analysis of experimental results from multiple crack growth events are used to characterize the elastic waves. Experimental results are compared with finite element predictions to examine the mechanism of AE generation at the crack tip.


2010 ◽  
Vol 46 (1) ◽  
pp. 215-227 ◽  
Author(s):  
T. H. Topper ◽  
J. J. F. Bonnen ◽  
M. Khalil ◽  
A. Varvani-Farahani

Author(s):  
Koji Gotoh ◽  
Keisuke Harada ◽  
Yosuke Anai

Fatigue life estimation for planar cracks, e.g. part-through surface cracks or embedded cracks is very important because most of fatigue cracks found in welded built-up structures show planar crack morphologies. Fatigue crack growth behaviour of an embedded crack in welded joints is investigated in this study. The estimation procedure of crack shape evolution for an embedded crack is introduced and validation of the estimation procedure of fatigue crack growth based on the numerical simulation of fatigue crack growth with EDS concept for an embedded crack is performed. The validity of the proposed shape evolution estimation method and the fatigue crack growth simulation based on the fracture mechanics approach with EDS concept are confirmed.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1656
Author(s):  
Mansur Ahmed ◽  
Md. Saiful Islam ◽  
Shuo Yin ◽  
Richard Coull ◽  
Dariusz Rozumek

This paper investigated the fatigue crack propagation mechanism of CP Ti at various stress amplitudes (175, 200, 227 MPa). One single crack at 175 MPa and three main cracks via sub-crack coalescence at 227 MPa were found to be responsible for fatigue failure. Crack deflection and crack branching that cause roughness-induced crack closure (RICC) appeared at all studied stress amplitudes; hence, RICC at various stages of crack propagation (100, 300 and 500 µm) could be quantitatively calculated. Noticeably, a lower RICC at higher stress amplitudes (227 MPa) for fatigue cracks longer than 100 µm was found than for those at 175 MPa. This caused the variation in crack growth rates in the studied conditions.


1995 ◽  
Vol 117 (4) ◽  
pp. 408-411 ◽  
Author(s):  
A. J. McEvily ◽  
Y.-S. Shin

A method for the analysis of the fatigue crack growth rate for short cracks has been developed and is applied to the case of fatigue crack growth of short surface cracks in a 1045 carbon steel. The method entails three modifications to standard LEFM procedures. These modifications include the use of a material constant to bridge between smooth and cracked specimen behavior, consideration of the plastic zone size to crack length ratio, and incorporation of the development of crack closure. Comparisons are made between calculations based upon this approach and experimental data.


Sign in / Sign up

Export Citation Format

Share Document