Research on Horizontal Scheme for Multi-Pylon Cable-Stayed Bridge

2012 ◽  
Vol 446-449 ◽  
pp. 1217-1220
Author(s):  
Yue Qiang ◽  
Li Li ◽  
Peng Cheng Li ◽  
He Jian

Longitudinal assembled stiffness is the biggest problem for multi-pylon cable-stayed bridge. The longitudinal displacement and midspan deflection could be effectively controlled by setting horizontal cable at the top of pylon of multi-pylon cable-stayed bridge. This paper obtains the area and the cable force change formula of the horizontal cable through simplified model analysis of the mechanical behavior of setting horizontal cable at the top of pylon. The comparative analysis is performed by application of finie element model to discuss the effect of setting horizontal cable at the top of pylon of multi-pylon cable-stayed bridge.

2012 ◽  
Vol 446-449 ◽  
pp. 1277-1282
Author(s):  
Jia Xing Zhou ◽  
Qing Tian Su ◽  
Chong Wu ◽  
Guo Tao Yang

Main cables of self-anchored suspension bridge are anchored at each end of main girder, thus producing a self-balancing system. In order to transfer the cable force to main girder safely and smoothly, the anchorage region is one of the most critical issues in design of a self-anchored suspension bridge. It is hard to fully understand the mechanical behavior only by spatial beam and column model, so a 3D shell finite element model is established to overcome the limitation of spatial beam and column model. The mechanical behavior of initial designed anchorage structure is then analyzed and a modified anchorage fabrication is proposed to improve the stress distribution. Analysis results show that: the modified anchorage system effectively reduces the stress level of anchorage structure and enhances the efficiency of anchorage structure.


2013 ◽  
Vol 351-352 ◽  
pp. 1325-1330
Author(s):  
Yan Qiang Li ◽  
Yan Liang Du

A new method of measurement of the cable force in cable-stayed bridge model test is introduced. Pressure ring sensor is used as the main component in this method and the tension of the stay cables can be measured real-time and in time. It is vertified that this method is exact and credible by model test and can be used in actual cable-stayed bridge. The static measurements for the test model are conducted. The testing results are compared with the numerical results of finite element model developed for the test model. A platform is established for the future researchs.


2012 ◽  
Vol 446-449 ◽  
pp. 2290-2294
Author(s):  
Wen Liang Qiu ◽  
Meng Jiang ◽  
Xing Bo Zhang

For floating system cable-stayed bridge, the longitudinal displacement of stiffening girder and moments of towers are very large when strong earthquake happens. Too large displacement of stiffening girder leads to collision between girders of the main bridge and the approaches. Using spatial finite element model and time history analysis method, the seismic responses of cable-stayed bridge are studied considering the elasto-plastic effects. The results show that the displacement of stiffening girder is very large when no seismic reduction measures are adopted. The viscous dampers installed between the stiffening girder and towers can efficiently reduce seismic responses of the cable-stayed bridge. Especially, the displacement of stiffening girder can be controlled well to meet the design requirement. Using the optimum parameters of damper, the height of pier under tower and intermediate supports in side span on seismic responses are studied in detail. The longitudinal displacement of stiffening girder increases with the pier height increasing. The intermediate supports in side span are benefit for seismic reduction.


2016 ◽  
Vol 10 (1) ◽  
pp. 418-432 ◽  
Author(s):  
Buyu Jia ◽  
Xiaolin Yu ◽  
Quansheng Yan ◽  
Zhen Yang

Steel-concrete composite beam cable-stayed bridge is a complicated system consisting of a composite beam, tower, and stayed cables. And the composite beam is composed of a steel beam, bridge deck and connectors, which has a different mechanical behavior from the general beam structure. In a word, the steel-concrete composite beam cable-stayed bridge is characterized by specific mechanical behavior and has many influencing factors. Thus, its safety analysis often cannot be easily implemented. This paper aims to study the component reliability of the steel-concrete composite beam based on the stochastic finite element method (SFEM) and the recognition of main failure modes in the system reliability of the cable-stayed bridge. For the component reliability of the steel-concrete composite beam, a nonlinear element model with 10 degrees of freedom (DOF) is adopted, which can consider the particular longitudinal slip effect between the steel and concrete. And the direct differential method (DDM) is used to deduce the response gradient of the element model. Meanwhile, the tower and the composite beam are considered as beam-column members to establish their limit state functions in the form of interaction equations. For the recognition of main failure modes in the system reliability, this paper proposes the concept of uniformity of the reliability index and the refinement strategy to improve theβ-unzipping method, which can identify the main failure modes or neglect the unnecessary non-main failure modes. Finally, a certain steel-concrete composite beam cable-stayed bridge is used to verify the effectiveness of the proposed method.


2013 ◽  
Vol 663 ◽  
pp. 172-176
Author(s):  
Liang Dong Zhu ◽  
Zhi Zhou Bai ◽  
De Wei Chen

The Pylon of Xinjiang Cable-Stayed Bridge has a special geometric form, of which the anchorage zone adopts the steel-concrete composite structure with built-in steel anchorage box. To investigate the mechanical behavior, the refined 3D finite element model has been established with the shear nails of steel anchorage box simulated. The stress conditions of steel anchorage box and concrete under prestressing bar and stayed cable forces have been then studied. The bearing proportion at the anchorage zone for the horizontal component of cable force has been calculated. Results indicate that the overall mechanical performance of the anchorage zone is excel, which can be a reference for designing of similar structure.


2011 ◽  
Vol 137 ◽  
pp. 154-158
Author(s):  
Wen Liang Qiu ◽  
Meng Jiang ◽  
Xing Bo Zhang

For floating system cable-stayed bridge, the longitudinal displacement of girder and moments of towers are very large when strong earthquake happens. The dampers installed between girder and towers in longitudinal direction can reduce efficiently displacement of the girder and moments of the towers induced by longitudinal seismic waves. Using spatial finite element model and time history analysis method, the influences of design parameters of viscous damper on seismic responses of cable-stayed bridge are studied in detail. The results of study show that, with the damping constant increasing, the longitudinal displacement of girder and moment of tower decrease, and the forces of damper increase. With velocity exponent increasing, the longitudinal displacement of girder and moment of tower increase, and the force of damper decrease. So, when determining the design parameters of damper, the cost of dampers, difficulty of construction and seismic reduction effects should be considered together.


2016 ◽  
Vol 33 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Chang-Hyun Lee ◽  
In Seok Han ◽  
Ji Yeoun Lee ◽  
Ji Hoon Phi ◽  
Seung-Ki Kim ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 1567-1572
Author(s):  
Tao Zhang ◽  
Hai Feng Bai

Optimum design for a cable-stayed bridge structure is very complicated because of large number of design variables. Use of ANSYS parametric design language in optimizing such structure consumes little computational time. The finished dead state analysis for single pylon double cable plane cable-stayed bridge with 120m long is performed. Mechanics equivalent are developed for the main pylon with concrete-filled steel tube. Prestress girder finite element model is established also. The theory of minimum bending strain energy is used in deriving the objective function as the quadratic form of the post-tensioning cable forces. In addition, the maximum deflection of the pylon and the maximum stresses of the main girder are both implemented in the optimization model. Optimized cable forces are found by optimization. Calculated results show that after the optimization, the cable force slightly changes, yet the internal force state under dead load remarkably improves, the bending stress of girder as well as the deflection of pylon significantly decreases. All these variations are satisfied for the limit value of engineering code. The results obtained revealed that the method presented indeed leads to optimal structural performance for the cable-stayed bridge in particular, and might be a useful reference for the design of other similar bridges.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110283
Author(s):  
Zhiping Zeng ◽  
Ji Hu ◽  
Chunyu Tian ◽  
Ping Li ◽  
Xiangdong Huang ◽  
...  

To study subway turnouts’ adaptability to steep gradients, a finite element model of a metro No. 9 simple turnout was established. The main works include: (1) The train’s most unfavourable loading condition was modelled. (2) The turnout’s longitudinal displacement and stress were analysed with different gradients under the train braking load, temperature change load and a combination of the two, to determine the structure’s safety and stability under the most unfavourable working conditions. (3) The turnout structure’s cumulative longitudinal deformation under reciprocating load was studied. Both a fastener longitudinal resistance-displacement experiment under reciprocating load and a numerical simulation of No. 9 turnout modelled by the finite element modelling software, ANSYS, were carried out to study the gradient’s influence on the turnout’s longitudinal mechanical characteristics. (1) The turnout’s longitudinal displacement and stress increase linearly with an increase in gradient and temperature change, both of which are unfavourable to the turnout structure. As the gradient increases from 0‰ to 30‰, the longitudinal stress and displacement increase by more than 10%. (2) The turnout’s rail strength and displacement on a 30‰ slope under the most unfavourable load conditions are within the specification limitations. (3) Under reciprocating load, the fastener longitudinal stiffness decreases and the maximum and residual longitudinal displacement of the switch rail increase; an increased gradient intensifies these effects on the turnout.


Sign in / Sign up

Export Citation Format

Share Document