Double Closed-Loop Feedback Controller Design for Micro Indoor Smart Autonomous Robot

2012 ◽  
Vol 462 ◽  
pp. 474-479
Author(s):  
Guang Yan Xu ◽  
Meng Zhang

In order to improve the control system performance of a Micro Indoor Smart Autonomous Robot, an embedded control system based on STM32 processor is proposed and a double closed-loop control structure is applied. The mathematical model is set up and kinematic model is simulated in Matlab/Simulink to estimate the PID parameters. Then the controller is experimented on robot and parameters are adjusted till getting good performance. The results show that the controller is stable and effective.

Author(s):  
ZHONG-QIANG DING ◽  
KECK VOON LING ◽  
KIAH MOK GOH

In this paper, the methods to rapidly deploy closed-loop control systems are presented. A flexible real-time embedded platform based on reconfigurable computing technologies is established, on which control blocks consisting of optimized control algorithms are set up. By employing control blocks, a set of tools aiming to shorten the development cycle of embedded control systems are developed. Compare to conventional ways, the tools give controller developers much faster ways to construct required controllers with higher flexibility.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012023
Author(s):  
M Manju Prasad ◽  
M A Inayathullah

Abstract The Proportional Integral Derivative (PID) controller is an effective and common feedback control design used in closed loop control systems. One such best consideration of closed loop control system would be cruise control system. This is a system that automatically controls the speed of an electric vehicle despite external disturbances. In this paper, the goal is to design a PID controller using root locus technique for a closed loop cruise control system. By root locus approach, the controller constants and controller design is finalized. Simulation results through MATLAB environment validate the effectiveness of controller design.


Author(s):  
Axel Fehrenbacher ◽  
Christopher B. Smith ◽  
Neil A. Duffie ◽  
Nicola J. Ferrier ◽  
Frank E. Pfefferkorn ◽  
...  

The objective of this research is to develop a closed-loop control system for robotic friction stir welding (FSW) that simultaneously controls force and temperature in order to maintain weld quality under various process disturbances. FSW is a solid-state joining process enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings compared to traditional fusion welding processes. During FSW, several process parameter and condition variations (thermal constraints, material properties, geometry, etc.) are present. The FSW process can be sensitive to these variations, which are commonly present in a production environment; hence, there is a significant need to control the process to assure high weld quality. Reliable FSW for a wide range of applications will require closed-loop control of certain process parameters. A linear multi-input-multi-output process model has been developed that captures the dynamic relations between two process inputs (commanded spindle speed and commanded vertical tool position) and two process outputs (interface temperature and axial force). A closed-loop controller was implemented that combines temperature and force control on an industrial robotic FSW system. The performance of the combined control system was demonstrated with successful command tracking and disturbance rejection. Within a certain range, desired axial forces and interface temperatures are achieved by automatically adjusting the spindle speed and the vertical tool position at the same time. The axial force and interface temperature is maintained during both thermal and geometric disturbances and thus weld quality can be maintained for a variety of conditions in which each control strategy applied independently could fail.


2011 ◽  
Vol 219-220 ◽  
pp. 3-7
Author(s):  
Ning Zhang ◽  
Rong Hua Liu

An expert control system based on transient response patterns and expert system techniques is proposed in this paper. Depending on the features of the closed-loop control system determines the control decision and adjusts the parameters of the controller. The proposed method requires minimal proper information about the controlled plant and, with the linear re-excitation learning method, the system is kept satisfying the performance criterion.


2013 ◽  
Vol 436 ◽  
pp. 166-173
Author(s):  
A. Mihaela Mîţiu ◽  
Daniel Constantin Comeagă ◽  
Octavian G. Donţu

In this paper are presented some aspects of transmissibility control of mechanical systems with 1 DOF so that the effects of vibration on their action to be minimized. Some technical solutions that can be used for this purpose is analyzed. Starting from the mathematical model of an electro-mechanical system with 1 DOF, are identified the parameters which influence the effectiveness of the transmissibility control system using an electrodynamic actuator who work in "closed loop".


2017 ◽  
Vol 3 (2) ◽  
pp. 363-366
Author(s):  
Tobias Steege ◽  
Mathias Busek ◽  
Stefan Grünzner ◽  
Andrés Fabían Lasagni ◽  
Frank Sonntag

AbstractTo improve cell vitality, sufficient oxygen supply is an important factor. A deficiency in oxygen is called Hypoxia and can influence for example tumor growth or inflammatory processes. Hypoxia assays are usually performed with the help of animal or static human cell culture models. The main disadvantage of these methods is that the results are hardly transferable to the human physiology. Microfluidic 3D cell cultivation systems for perfused hypoxia assays may overcome this issue since they can mimic the in-vivo situation in the human body much better. Such a Hypoxia-on-a-Chip system was recently developed. The chip system consists of several individually laser-structured layers which are bonded using a hot press or chemical treatment. Oxygen sensing spots are integrated into the system which can be monitored continuously with an optical sensor by means of fluorescence lifetime detection.Hereby presented is the developed hard- and software requiered to control the oxygen content within this microfluidic system. This system forms a closed-loop control system which is parameterized and evaluated.


Author(s):  
Bahram Yaghooti ◽  
Ali Siahi Shadbad ◽  
Kaveh Safavi ◽  
Hassan Salarieh

In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the effectiveness of this method.


2014 ◽  
Vol 889-890 ◽  
pp. 958-961
Author(s):  
Huan Ming Chen

It is very important to simulate driver's manipulation for people - car - road closed loop simulation system. In this paper, the driver model is divided into two parts, linear vehicle model is used to simulate the driver's driving experience, and closed-loop feedback is used to characterize the driver's emergency feedback. The lateral acceleration of vehicle is used as feedback in closed loop control. Simulation results show that the smaller lateral acceleration requires the less closed-loop feedback control. The driver model can accurately track the target path, which can be used to simulate the manipulation of the driver. The driver model can be used for people - car - road closed loop simulation to evaluate vehicle handling stability.


Sign in / Sign up

Export Citation Format

Share Document