Phase Evolution Simulation of Al2O3-SiС-C Castable with Cr2O3 Addition by Thermodynamic Calculation

2012 ◽  
Vol 462 ◽  
pp. 77-83
Author(s):  
Yu Cheng Yin ◽  
Yu Cheng Yin ◽  
Shan Ge ◽  
Jiu Chang Lu ◽  
Jian Hua Nie

In order to make sure whether the Cr2O3would change to Cr6+during the service, 4wt % Cr2O3was added to the calcium aluminate cement bonded Al2O3-SiC-C castables for blast furnace main trough, then the phase evolution was analyzed through thermodynamic calculation done by Factsage 6.1 under air atmosphere, which is close to its real work conditions. Calculations results show that Cr2O3was reduced to Cr3C2with low air amount, with amount of air increase, Cr3C2transformed to Cr4C and Cr5Si3successively, and turned to Cr2O3at last with much more air, and no compound including Cr6+was founded.

2022 ◽  
Vol 8 ◽  
Author(s):  
Wu Zhiqiang ◽  
Liu Hengjie ◽  
Qu Xiong ◽  
Wu Guangai ◽  
Xing Xuesong ◽  
...  

During the thermal recovery of heavy oil thermal recovery wells, improving the mechanical properties and integrity of the cement ring is of great significance for the safe and efficient exploitation of heavy oil resources. This paper studies the relative properties of calcium aluminate cement and three kinds of slags under the conditions of 50°C × 1.01 MPa and 315°C × 20.7 MPa. CAC-slag composite material performance was evaluated using the cement paste compressive strength and permeability tests to study the physical properties of CAC with blast furnace slag. X-ray diffraction analysis, scanning electron microscopy (SEM), and thermal analysis (DSC/TG) were carried out to investigate the mineralogical composition of CAC with blast furnace slag. Results show that adding blast furnace slag did not affect the performance of cement slurry. Moreover, C2ASH8 curing occurred at low temperature, the microstructure of CAC paste was compact, and the permeability resistance was improved, thus improving the low-temperature properties of neat CAC. When cured at a high temperature, the CAC paste was mainly hydrated with C3ASH4 and AlO(OH), which had a well-developed crystal structure. Adding blast furnace slag can improve the CAC resistance to high temperature.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3855
Author(s):  
Amirmohamad Abolhasani ◽  
Bijan Samali ◽  
Fatemeh Aslani

One commonly used cement type for thermal applications is CAC containing 38–40% alumina, although the postheated behavior of this cement subjected to elevated temperature has not been studied yet. Here, through extensive experimentation, the postheated mineralogical and physicochemical features of calcium aluminate cement concrete (CACC) were examined via DTA/TGA, X-ray diffraction (XRD), and scanning electron microscopy (SEM) imaging and the variation in the concrete physical features and the compressive strength deterioration with temperature rise were examined through ultrasonic pulse velocity (UPV) values. In addition, other mechanical features that were addressed were the residual tensile strength and elastic modulus. According to the XRD test results, with the temperature rise, the dehydration of the C3AH6 structure occurred, which, in turn, led to the crystallization of the monocalcium dialuminate (CA2) and alumina (Al2O3) structures. The SEM images indicated specific variations in morphology that corresponded to concrete deterioration due to heat.


Sign in / Sign up

Export Citation Format

Share Document