Oxide Layer Modification of Mg-Al Alloy Coated by Plasma Electrolytic Oxidation Using Zirconia Particles

2012 ◽  
Vol 463-464 ◽  
pp. 406-409 ◽  
Author(s):  
D.Y. Choi ◽  
J. Hwang ◽  
K.M. Lee ◽  
K.R. Shin ◽  
Y.G. Ko ◽  
...  

The paper reported the effect of zirconia incorporation on the oxide layer modification of the valve metal such as magnesium coated by plasma electrolytic oxidation (PEO). To incorporate zirconia particles into the oxide layer, PEO coatings were carried out under AC condition in electrolytes containing zirconia powder. After PEO coatings, structure observation revealed that a number of zirconia particles were distributed uniformly throughout the oxide layer while the size and distribution of pores remained unchanged as compared to the results coated by PEO without zirconia. It was found that fine zirconia particles incorporated into the oxide layers played an important role in enhancing the anti-corrosion properties of bare metal.

2015 ◽  
Vol 53 (8) ◽  
pp. 535-540 ◽  
Author(s):  
Young Gun Ko ◽  
Dong Hyuk Shin ◽  
Hae Woong Yang ◽  
Yeon Sung Kim ◽  
Joo Hyun Park ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2094
Author(s):  
Yevheniia Husak ◽  
Joanna Michalska ◽  
Oleksandr Oleshko ◽  
Viktoriia Korniienko ◽  
Karlis Grundsteins ◽  
...  

The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Viorel Malinovschi ◽  
Alexandru Horia Marin ◽  
Catalin Ducu ◽  
Sorin Moga ◽  
Victor Andrei ◽  
...  

In this study, the surface of commercially pure titanium (Cp-Ti) was covered by a 21–95 µm-thick aluminum oxide layer using plasma electrolytic oxidation. Coating characterization revealed the formation of nodular and granular α- and γ-Al2O3 phases with minor amounts of TiAl2O5 and Na2Ti4O9 which yielded a maximum 49.0 GPa hardness and 50 N adhesive critical load. The corrosion resistance behavior in 3.5 wt.% NaCl solution of all plasma electrolytic oxidation (PEO) coatings was found to be two orders of magnitude higher compared to bare Ti substrate.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4037
Author(s):  
Zhenjun Peng ◽  
Hui Xu ◽  
Siqin Liu ◽  
Yuming Qi ◽  
Jun Liang

Phosphate and aluminate electrolytes were used to prepare plasma electrolytic oxidation (PEO) coatings on 6061 aluminum alloy. The surface and cross-section microstructure, element distribution, and phase composition of the PEO coatings were characterized by SEM, EDS, XPS, and XRD. The friction and wear properties were evaluated by pin-on-disk sliding tests under dry conditions. The corrosion resistance of PEO coatings was investigated by electrochemical corrosion and salt spray tests in acidic environments. It was found that the PEO coatings prepared from both phosphate and aluminate electrolytes were mainly composed of α-Al2O3 and γ-Al2O3. The results demonstrate that a bi-layer coating is formed in the phosphate electrolyte, and a single-layered dense alumina coating with a hardness of 1300 HV is realizable in the aluminate electrolyte. The aluminate PEO coating had a lower wear rate than the phosphate PEO coating. However, the phosphate PEO coating showed a better corrosion resistance in acidic environment, which is mainly attributed to the presence of an amorphous P element at the substrate/coating interface.


2020 ◽  
Vol 27 (11) ◽  
pp. 2050007
Author(s):  
KOANGYONG HYUN ◽  
JUNG-HYUNG LEE ◽  
SEONG-JONG KIM

Plasma electrolytic oxidation (PEO) is an electrochemical-based surface modification technique that produces oxide layers on valve metals. The PEO process is performed in an electrolyte solution, which offers the possibility of particles’ incorporation into the growing oxide layer. In this study, we employed a PEO technique on a commercial Al alloy in an aqueous suspension of carbon nanotubes (CNTs) to fabricate CNT-incorporated oxide layer. The voltage–time response was recorded during the process. The surface of the resulting oxide layer was characterized by means of a scanning electron microscope (SEM), an energy-dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD). It was found from the SEM observation that the CNTs were successfully incorporated into the oxide layer. The PEO with the addition of CNTs led to a delay in time to breakdown (50[Formula: see text][Formula: see text][Formula: see text]s) and a decrease in breakdown voltage (442[Formula: see text][Formula: see text][Formula: see text]V) in the voltage–time curve. The microstructural feature was clearly distinguishable between the oxide layers produced with and without CNTs: a pancake-like structure for PEO without CNTs, and a doughnut-like structure for PEO with CNTs. However, neither the results of the structure analysis nor the elemental analysis provides a clear indication of carbon, even though the presence of CNTs in the oxide layer is evident, suggesting that further optimization of CNT concentration is required.


Sign in / Sign up

Export Citation Format

Share Document