Prediction of Inelastic Behavior of Composite Laminates Using Multi-Surface Continuum Damage-Plasticity

2008 ◽  
Vol 47-50 ◽  
pp. 773-776 ◽  
Author(s):  
Bijan Mohammadi ◽  
Hossein Hosseini-Toudeshky ◽  
Mohammad Homayoun Sadr-Lahidjani ◽  
Shahram Aivazzadeh

The recently performed investigations in continuum plastic-damage analysis of composite laminates by the authors showed that using a single hardening internal variable for damage and plasticity surfaces may prone to significant errors in response and failure load for some lay-ups. In this paper, the new technique of coupled continuum plastic-damage mechanics including multisurface dissipation potentials are employed to improve the results. The response and failure loads of the laminated composites with different lay-ups are predicted using elastic, damage, and damageplasticity conditions with single and multi surface plasticity and compared with the available experimental results.

2015 ◽  
Vol 06 (03) ◽  
pp. 1550009 ◽  
Author(s):  
L. Li ◽  
F. Aliabadi ◽  
P. H. Wen

Application of meshfree Galerkin method to homogenization and Continuum Damage Mechanics (CDM) analysis of plain woven composites is presented. Three types of meshfree formulations are developed and include: radial basis function, moving least squares and moving Kriging. Three benchmark examples are used to demonstrated the efficiency of the meshfree formulation as well as compare the performance of the three shape functions. Non-linear stress–strain relationhip of unit cellusing the three shape functions are assessed with two benchmark examples of CDM model.


2010 ◽  
Vol 123-125 ◽  
pp. 527-530
Author(s):  
Hossein Hosseini-Toudeshky ◽  
Bijan Mohammadi

To predict the progressive damages including the large delamination growth in composite laminates, a new interface de-cohesive constitutive law is developed which is compatible with 3D continuum damage mechanics (CDM). To avoid the difficulties of 3D mesh generation and 3D interface modeling between the layers, the interface element is implemented in the Reddy’s full layer-wise plate theory. An angle-ply laminate is analyzed to evaluate the developed CDM+Interface procedure in edge delamination initiation and evolution at final stage of CDM damage progress.


Author(s):  
Siamak Yazdani ◽  
Sevenn Borgersen ◽  
Asli Pelin Gurgun ◽  
Hossein Nazari

Damage Mechanics has become a useful theory in describing the nonlinear behavior of solids driven by the nucleation and growth of cracks and microcracks. This approach, based on the first principles of mechanics and thermodynamics, has also been combined with classical theories of plasticity to address a wide range of loading applications. In spite of the many different damage mechanics models and representations that are proposed, the foundation of damage mechanics is not well understood or at least not thoroughly published giving rise to the many inaccurate definitions and formulations. The intent of this paper is to provide the background of the continuum damage mechanics outlining the fundamentals on which this field theory is set up. The internal variable theory of continuum thermodynamics is reviewed and is shown that with Legendre transformation technique, various potential functions can be developed for damage mechanics formulation in either stress or strain space. The concept of constrained or neighboring equilibrium state is also introduced and is explained. The paper will conclude with the derivation of the general damage potential and a suggestion is given for the isotropic damage formulation with the resulting uniaxial stress-strain relation.


10.14311/610 ◽  
2004 ◽  
Vol 44 (5-6) ◽  
Author(s):  
M. Jirásek

The purpose of this paper is to explain why the standard continuum theory fails to properly describe certain mechanical phenomena and how the description can be improved by enrichments that incorporate the influence of gradients or weighted spatial averages of strain or of an internal variable. Three typical mechanical problems that require such enrichments are presented: (i) dispersion of short elastic waves in heterogeneous or discrete media, (ii) size effects in microscale elastoplasticity, in particular with the size dependence of the apparent hardening modulus, and (iii) localization of strain and damage in quasibrittle structures and with the resulting transitional size effect. Problems covered in the examples encompass static and dynamic phenomena, linear and nonlinear behavior, and three constitutive frameworks, namely elasticity, plasticity and continuum damage mechanics. This shows that enrichments of the standard continuum theory can be useful in a wide range of mechanical problems. 


2021 ◽  
Author(s):  
MANISH H. NAGARAJ ◽  
ERASMO CARRERA ◽  
MARCO PETROLO

The objective of the current work is to develop a global-local framework for the progressive damage analysis of composite laminated structures. The technique involves two sequential analyses—an initial low-fidelity 3D-FE based linear analysis of the global structure, followed by the local nonlinear analysis of critical regions where damage is likely to occur. The numerical models used for the local analysis are developed using higher-order layer-wise structural theories obtained via the Carrera Unified Formulation. Composite damage is modelled using the CODAM2 model based on continuum damage mechanics, and the nonlinear problem is solved using explicit time integration schemes. Preliminary assessments are carried out to validate the proposed global-local framework by considering open-hole tensile specimens of quasi-isotropic composite laminates. Both full-scale CUF models and the proposed global-local approach are used to predict the tensile strength of the specimen. It is shown that the obtained results are in good agreement with experiment data, thus validating the framework, and a multi-fold improvement in computational time is demonstrated.


2014 ◽  
Vol 488-489 ◽  
pp. 799-802
Author(s):  
Hong Jie Chen ◽  
Wei Ya Xu ◽  
Ru Bin Wang ◽  
Wei Wang

With complex mechanics character and under the action of compression and tension in tri-direction, rock will show coupled plastic-damage mechanism as its basic character. Phenomenological coupled elastic-plastic-damage constitutive model with internal variable is proposed based on thermal mechanics theory, elastic law and macro damage mechanics. Numerical experiments on this model and analyze the model character. The result shows that the coupling model could realize rocks softening behavior brought about by damage and strength enlargement caused by confining pressure increasing.


2018 ◽  
Vol 157 ◽  
pp. 01023
Author(s):  
Milan Žmindák ◽  
Martin Dudinský

It is well that a finite element method is very popular simulation method to predict the physical behavior of systems and structures. In the last years an increase of interest in a new type of numerical methods known as meshless methods was observed. The paper deals with application of radial basis functions on modelling of inelastic damage using continuum damage mechanics of layered plate composite structures reinforced with long unidirectional fibers. For numerical simulations of elastic-plastic damage of layered composite plates own computational programs were implemented in MATLAB programming language. We will use the Newton-Raphson method to solve nonlinear systems of equations. Evaluation damage during plasticity has been solved using return mapping algorithm. The results of elastic-plastic damage analysis of composite plate with unsymmetrical laminate stacking sequence are presented.


Sign in / Sign up

Export Citation Format

Share Document