Modifing PET Fabric Surface with Peanut Protein

2012 ◽  
Vol 472-475 ◽  
pp. 66-69 ◽  
Author(s):  
Gang Xian Zhang ◽  
Zhong Li She ◽  
Feng Xiu Zhang ◽  
Da Yang Wu

The poly(ethyleneteraphthalate)(PET) fabric was semi-encased sucrose ester at high pressure and high temperature to endue it enough –OH, and then the PET fabric was modified with peanut protein through crosslinkage. The FT-IR spectra showed the peanut protein was grafted on PET fabric, the X-ray diffraction spectra showed the structure of grafting peanut protein was random coin, and DSC thermograms showed the thermostability of PET fabric grafted peanut protein kept very well. The wearability of PET fabric grafted peanut protein was measured too. The results showed the hydrophilicity and antistatic property of fabric was improved greatly, the cockle elasticity and broken strength kept very well. Though the whiteness of fabric decreased after grafting peanut protein, it could be bleached with normal method. These showed the PET peanut protein composite fabric was high functional.

2012 ◽  
Vol 430-432 ◽  
pp. 49-52
Author(s):  
Gang Xian Zhang ◽  
Xiao Hua Shi ◽  
Wei Hu ◽  
Feng Xiu Zhang ◽  
Da Yang Wu

Though poly(ethyleneteraphthalate)(PET) fabrics have high initial modulus, outstanding creasability and wash-well character, but its hydrophilicity and biocompatibility are very poor. In this paper, the PET fabric was encased sucrose ester at high pressure and high temperature to endue it enough hydroxyl to grafting protein. The sericin was grafted on PET fabric by sucrose eater glycidyl ether (SEGE). The FT-IR spectra showed that sericin was grafted on PET fabric, and the structure of sericin was random coil conformation. X-ray diffraction spectra showed the structure of PET fiber did not changed. DSC showed the thermostability increased a little. After the PET fabric grafted with sericin, the hydrophilicity of PET sericin composite fabric was improved greatly, the cockle elasticity kept well, and the broken strength in creased a little. Certainly, the whiteness and air permeability decreased a little. The PET sericin composite fabric was high functional.


2018 ◽  
Vol 89 (8) ◽  
pp. 1488-1499 ◽  
Author(s):  
Cheng Zhang ◽  
Ling Zhong ◽  
Dingfei Wang ◽  
Fengxiu Zhang ◽  
Guangxian Zhang

Grafting graphene on polyethylene terephthalate (PET) fibers requires a large number of environmentally harmful chemicals. In this study, a facile high-temperature and high-pressure method of inlaying graphene nanoplatelets was applied to fabricate anti-ultraviolet (UV) and anti-static graphene/PET composites. The resulting graphene-inlaid (GI) PET fabric, which showed excellent anti-ultraviolet and anti-static properties, was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform–infrared spectroscopy and X-ray diffraction. Results suggested that graphene had been inlaid into the PET fiber surface, and that the optimal inlaying conditions were as follows: inlaying temperature 200℃, inlaying pressure 15 MPa, and inlaying time 15 s. The UV protection factor of the GI PET fabric under optimal conditions could reach 50+ and was maintained at 50+ after 50 laundering cycles. The peak values of the static voltage and its half-time in the GI PET fabric could be reduced from 500.0 V to 10.0 V and from 7.39 s to 0.53 s, respectively, and the electrical resistivity of the GI PET fabric was 36.04 ± 0.14 kΩ.cm. The breaking strengths of the GI PET fabrics could be retained over 70.0% that of the pure PET fabric. The facile high-temperature and high-pressure inlaying method is an eco-friendly technique that requires very few chemicals, except for ethyl alcohol.


2011 ◽  
Vol 189-193 ◽  
pp. 634-638
Author(s):  
Gang Xian Zhang ◽  
Xi Ping Zeng ◽  
Wei Hu ◽  
Feng Xiu Zhang ◽  
Ling Xiao Jing

Wearability of polyester textile is very outstanding in chemical fabric;silkworm pupae protein has good biocompatibility. In order to make a new kind of polyester textile which not only has good wearability, but also has good biocompatibility, the polyester fibers were semi-encased with sucrose ester to endue polyester fibers with reacting hydroxyl groups, and then silkworm pupae protein was grafted on surface of polyester fiber textile with a crosslinkage compound in this study. The structure of polyester textile grafted with silkworm pupae protein were studied by SEM, X-ray diffraction and differential scanning calorimetry(DSC). The polyester fibers were enclosed by layer of materials in SEM, X-ray diffraction showed silkworm pupae protein was random coil conformation, DSC exhibited the thermal property of polyester fibers almost did not change. The wearability of polyester fabric grafted silkworm pupae protein was measured too. With the increase of grafting silkworm pupae protein rate on polyester fabric, moisture permeability of polyester fabric increased firstly and decreased a little subsequently, the moister regain increased monotonously, the cockle elasticity decreased a little, the whiteness almost did not change, and flexural stiffness increased a little.


2004 ◽  
Vol 99 (3) ◽  
pp. 118-129 ◽  
Author(s):  
Takahiro KURIBAYASHI ◽  
Hiroyuki KAGI ◽  
Masahiko TANAKA ◽  
Mizuhiko AKIZUKI ◽  
Yasuhiro KUDOH

2010 ◽  
Vol 13 (2) ◽  
pp. 152 ◽  
Author(s):  
Ghobad Mohammadi ◽  
Mohammad Barzegar-Jalali ◽  
Hadi Valizadeh ◽  
Hossein Nazemiyeh ◽  
Azim Barzegar-Jalali ◽  
...  

ABSTRACT- Purpose. A physically sound derivation for reciprocal power time (RPT) model for kinetic of drug release is given. In order to enhance ibuprofen dissolution, its solid dispersions (SDs) prepared by cogrinding technique using crospovidone (CP), microcrystalline cellulose (MC) and oleaster powder (OP) as a novel carrier and the model applied to the drug release data. Methods. The drug cogrounds with the carriers were prepared and subjected to the dissolution studies. For elucidation of observed in vitro differences, FT-IR spectroscopy, X-ray diffraction patterns, DSC thermograms and laser particle size measurement were conducted. Results. All drug release data fitted very well to newly derived RPT model. The efficiency of the carriers for dissolution enhancement was in the order of: CP>OP>MC. The corresponding release kinetic parameter derived from the model, t50% (time required for 50% dissolution) for the carrier to drug ratio 2:1 were 2.7, 10.2 and 12.6 min, respectively. The efficiency of novel carrier, OP, was between CP and MC. FT-IR showed no interaction between the carriers and drug. The DSC thermograms and X-ray diffraction patterns revealed a slight reduced crystallinty in the SDs. Also grinding reduced mean particle size of drug from 150.7 to 44.4 µm. Conclusion. An improved derivation for RPT model was provided which the parameter of the model, t50%, unlike to previous derivations was related to the most important property of the drug i.e. its solubility. The model described very well drug release kinetics from the solid dispersions. Cogrinding was an effective technique in enhancing dissolution rate of ibuprofen. Elaeagnus angostifolia fruit powder was suggested as a novel potential hydrophilic carrier in preparing solid dispersion of ibuprofen.


2011 ◽  
Vol 332-334 ◽  
pp. 799-803
Author(s):  
Gang Xian Zhang ◽  
Nan Han ◽  
Wei Hu ◽  
Feng Xiu Zhang

Though polyester fabric has favorable characteristics, it is not comfortable to wear because of its hydrophobic characteristics Silk fibroin has lots of polar and electric groups, and its biocompatible is very good. In this paper polyester fabric was encased sucrose ester to endue polyester fibers lots of –OH, then sucrose eater glycidyl ether (SEGE) which not only had crosslink function but also had softening function was used to graft silk fibroin on polyester fabric. FT-IR spectra showed silk fibroin was grafted on polyester fabric; DSC showed thermostability of fabric kept very well; X-ray diffraction spectra showed the structure of some silk fibroin grafted on polyester fabric was -sheet. With the increase of grafting rate of silk fibroin on polyester fabric, the broken strength of polyester fabric grafted silk fibroin did not decrease; cockle elastics kept very well; antistatic property and moisture regain increased greatly, whiteness and air permeability kept very well and fabric was still soft enough. The polyester fabric grafted silk fibroin was high functional.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5330
Author(s):  
Laura-Madalina Cursaru ◽  
Sorina Nicoleta Valsan ◽  
Maria-Eliza Puscasu ◽  
Ioan Albert Tudor ◽  
Nicoleta Zarnescu-Ivan ◽  
...  

Recently, carbon nanotubes (CNTs) have been used extensively to develop new materials and devices due to their specific morphology and properties. The reinforcement of different metal oxides such as zinc oxide (ZnO) with CNT develops advanced multifunctional materials with improved properties. Our aim is to obtain ZnO-CNT nanocomposites by in situ hydrothermal method in high-pressure conditions. Various compositions were tested. The structure and morphology of ZnO-CNT nanocomposites were analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry—thermogravimetry (DSC-TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). These analyses showed the formation of complex ZnO-CNT structures. FT-IR spectra suggest possible interactions between CNT and ZnO. DSC-TG analysis also reveals the formation of some physical bonds between ZnO and CNT, through the appearance of endothermic peaks which could be assigned to the decomposition of functional groups of the CNT chain and breaking of the ZnO-CNT bonds. XRD characterization demonstrated the existence of ZnO nanocrystallites with size around 60 nm. The best ZnO:CNT composition was further selected for preliminary investigations of the potential of these nanocomposite powders to be processed as pastes for extrusion-based 3D printing.


2004 ◽  
Vol 27 (1-3) ◽  
pp. 415-418
Author(s):  
J. Bak-Misiuk ◽  
A. Misiuk ◽  
J. Ratajczak ◽  
A. Shalimov ◽  
I. Antonova ◽  
...  

2020 ◽  
Author(s):  
Pia Vervoorts ◽  
Stefan Burger ◽  
Karina Hemmer ◽  
Gregor Kieslich

The zeolitic imidazolate frameworks ZIF-8 and ZIF-67 harbour a series of fascinating stimuli responsive properties. Looking at their responsitivity to hydrostatic pressure as stimulus, open questions exist regarding the isotropic compression with non-penetrating pressure transmitting media. By applying a state-of-the-art high-pressure powder X-ray diffraction setup, we revisit the high-pressure behaviour of ZIF-8 and ZIF-67 up to <i>p</i> = 0.4 GPa in small pressure increments. We observe a drastic, reversible change of high-pressure powder X-ray diffraction data at <i>p</i> = 0.3 GPa, discovering large volume structural flexibility in ZIF-8 and ZIF-67. Our results imply a shallow underlying energy landscape in ZIF-8 and ZIF-67, an observation that might point at rich polymorphism of ZIF-8 and ZIF-67, similar to ZIF-4(Zn).<br>


Sign in / Sign up

Export Citation Format

Share Document