Inertial Piezoelectric Micro Rotary Actuator

2012 ◽  
Vol 487 ◽  
pp. 208-211
Author(s):  
Jian Ming Wen ◽  
Ji Jie Ma ◽  
Zhong Hua Zhang ◽  
Guang Ming Cheng ◽  
Jun Wu Kan

A newly inertial piezoelectric rotary actuator is proposed based on controlling the orderly changes of friction force between the rotator and supporting faces in mechanical way. The dynamic simulation model of the actuator is derived. A prototype small inertial rotary actuator characterized by two symmetric piezoelectric stacks has been fabricated based on the proposed method. The actuator can rotate when it is powered with a square-wave or sine-wave voltage. The experimental and simulation results show that its angular speed is proportional to both the driving voltage’s amplitude and the frequency. The experimental results also show good agreement with the simulation analysis.

2021 ◽  
Author(s):  
Fankai Kong ◽  
Wenbo Cui ◽  
Fei Chen ◽  
Zhenyang Wang ◽  
Zhongchen Zhou

According to the insufficient force analysis of the cable in the process of winch retraction, especially the insufficient research on the flexible cable retraction process such as the UHMWPE cable, the dynamic simulation analysis of the retraction process of the parallel grooved multi-layer drum and UHMWPE cable cable is carried out by using the virtual prototype software ADAMS. The simulation model of the cable is created by using the macro command program, and the virtual prototype model of the cable drum is completed, and the force changes of the cable under different rotating speeds are simulated.The simulation results show that the contact force between the cable and the double winding drum can be quickly stable under the specific load, and with the increase of the rotating speed, the maximum value of the tension change of the cable increases, but it is finally stable at a fixed value. The results can provide some reference for structural strength calculation of cable storage drum, selection of high molecular polyethylene cable and dynamic analysis of cable arranger under load.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985284
Author(s):  
Meiliang Wang ◽  
Mingjun Wang ◽  
Xiaobo Li

The use of the traditional fabric simulation model evidently shows that it cannot accurately reflect the material properties of the real fabric. This is against the background that the simulation result is artificial or an imitation, which leads to a low simulation equation. In order to solve such problems from occurring, there is need for a novel model that is designed to enhance the essential properties required for a flexible fabric, the simulation effect of the fabric, and the efficiency of simulation equation solving. Therefore, the improvement study results will offer a meaningful and practical understanding within the field of garment automation design, three-dimensional animation, virtual fitting to mention but a few.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rafael Reuveny

Abstract Background Social science models find the ecological impacts of climate change (EICC) contribute to internal migration in developing countries and, less so, international migration. Projections expect massive climate-related migration in this century. Nascent research calls to study health, migration, population, and armed conflict potential together, accounting for EICC and other factors. System science offers a way: develop a dynamic simulation model (DSM). We aim to validate the feasibility and usefulness of a pilot DSM intended to serve as a proof-of-concept and a basis for identifying model extensions to make it less simplified and more realistic. Methods Studies have separately examined essential parts. Our DSM integrates their results and computes composites of health problems (HP), health care (HC), non-EICC environmental health problems (EP), and environmental health services (ES) by origin site and by immigrants and natives in a destination site, and conflict risk and intensity per area. The exogenous variables include composites of EICC, sociopolitical, economic, and other factors. We simulate the model for synthetic input values and conduct sensitivity analyses. Results The simulation results refer to generic origin and destination sites anywhere on Earth. The effects’ sizes are likely inaccurate from a real-world view, as our input values are synthetic. Their signs and dynamics are plausible, internally consistent, and, like the sizes, respond logically in sensitivity analyses. Climate migration may harm public health in a host area even with perfect HC/ES qualities and full access; and no HP spillovers across groups, conflict, EICC, and EP. Deviations from these conditions may worsen everyone’s health. We consider adaptation options. Conclusions This work shows we can start developing DSMs to understand climate migration and public health by examining each case with its own inputs. Validation of our pilot model suggests we can use it as intended. We lay a path to making it more realistic for policy analysis.


2021 ◽  
Author(s):  
Qiongxiao Wu ◽  
Jianjun Wang ◽  
Jingming Chen ◽  
Pengzheng Li

Abstract Based on the one-dimensional simulation model of lubricating oil system is established and analyzed by using FLOWMASTER software, this paper proposes a new method of optimizing lubricating oil system by PID technology. Ensure that the configuration requirements and control strategies of the relevant accessories of the simulation model are satisfied with the design requirements. Firstly, by simulating lubricating oil pressure fluctuation and lubricating oil flow distribution under Open/Close Valve in different opening and closing time, the optimal opening/closing time of Open/Close Valve is determined to be 0.2 s and 0.5 s respectively. Secondly, by writing the controller script file combined with a controller to realize automatic unloading relief valve simulation, determine the relief valve pressure regulating range of 0∼0.38 MPa, For precision of constant pressure valve of oil spill, the simulation results show that the average 10 m3/h flow caused by pressure changes of about 0.06 MPa. Under the flow sudden change signal of about 40 m3/h, the maximum pressure change is less than 0.1 MPa. Through the simulation results, it is found that most of the lubrication parts in the original design have the phenomenon of flow redundancy, which causes unnecessary pump power loss. The system is optimized by PID technology. By comparing the simulation results before and after optimization, it is found that the speed of constant displacement pump could be changed in time by PID controller, and the flow redundancy could be improved significantly, so the lubricating oil system could be lower consumption and achieve the purpose of optimization.


2018 ◽  
Vol 203 ◽  
pp. 03005
Author(s):  
Idzham Fauzi Mohd Ariff ◽  
Mardhiyah Bakir

A dynamic simulation model was developed, calibrated and validated for a petrochemical plant in Terengganu, Malaysia. Calibration and validation of the model was conducted based on plant monitoring data spanning 3 years resulting in a model accuracy (RMSD) for effluent chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and total suspended solids (TSS) of ±11.7 mg/L, ±0.52 mg/L and ± 3.27 mg/L respectively. The simulation model has since been used for troubleshooting during plant upsets, planning of plant turnarounds and developing upgrade options. A case study is presented where the simulation model was used to assist in troubleshooting and rectification of a plant upset where ingress of a surfactant compound resulted in high effluent TSS and COD. The model was successfully used in the incident troubleshooting activities and provided critical insights that assisted the plant operators to quickly respond and bring back the system to normal, stable condition.


Sign in / Sign up

Export Citation Format

Share Document