Robust H∞ Filtering for Stochastic Networked Control System with Nonlinearities and Missing Measurements

2012 ◽  
Vol 503-504 ◽  
pp. 1458-1462
Author(s):  
Jun Cheng ◽  
Hong Zhu ◽  
Yu Ping Zhang ◽  
Yong Zeng

This paper investigate the problem of Robust H∞ filtering for stochastic networked control system with nonlinearities and missing measurements. In this paper, missing measurements and nonlinearities are considered. The sufficient conditions for the existence of the filter are given, thus, guaranteeing the filter error system exponentially stable in the mean-square sense and the performance satisfies a prescribed level by employing the new Lyapunov-Krasovskii functional and linear matrix inequality technique, some new sufficient conditions are obtained.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiahao Li ◽  
Tingting Zhang ◽  
Jinfeng Gao ◽  
Ping Wu

This paper is concerned with the problem of event-triggeredH∞filtering for multiagent systems with Markovian switching topologies and network-induced delay. An event-triggered mechanism is given to ease the information transmission. Consider that the network topology is directed in this paper, which represents the communication links among agents. Due to the existence of network-induced delay, the time-delay approach is adopted, which can effectively deal with filtering error system. By constructing a Lyapunov-Krasovskii functional and employing linear matrix inequality technique, sufficient conditions are established to ensure the filtering error system to achieve asymptotically stable withH∞performance index. A simulation example is given to illustrate the effectiveness of the proposed method.


2001 ◽  
Author(s):  
Octavian Beldiman ◽  
Linda G. Bushnell ◽  
Gregory C. Walsh ◽  
Hua O. Wang ◽  
Yiguang Hong

Abstract In this paper we study the effect of external perturbations on a networked control system. We start by assuming that the non-networked system without perturbation is exponentially stable. Then, for fast enough networks we show that if the perturbation is bounded the networked system is ultimately bounded and if the perturbation is vanishing then the networked system is asymptotically stable. We conclude the paper with simulations verifying the results.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 249
Author(s):  
Richa Sharma ◽  
Deepak Nagaria

Networked control system is a closed loop system in which information or data travel through the communication network. The presence of communication network will increase time delay and information losses. Due to these losses and delay the performance of the system decreases. This paper represents an analysis to find the stability of the networked control system with the varying time hindrances present in the network. In this research, it has been assumed that the delay in time is less than the sampling period. The stability conditions for NCS have been procured with the use of the Lyapunov function approach and has been described in terms of LMI(Linear Matrix Inequality).This examination confirm the adequate state of stability through MATLAB simulation and the numerical case demonstrates the outcome.  


2014 ◽  
Vol 912-914 ◽  
pp. 1065-1068
Author(s):  
Li Ming Zhu ◽  
Zong Da Zhu ◽  
Yong Gang Yan

T For the networked control system (NCS), the considered system has actuator and sensor failures. In considering the impact of the network delay on system performance, establish a new class of uncertain NCS fault model Then use Lyapunov stability theory, fault-tolerant control theory and the static state feedback, the sufficient conditions for closed-loop NCS possessing robust asymptotically stable against actuator and sensor failure are given . And the robust H-inf fault-tolerant controller design method under the sensor and actuator failures is deduced in terms of linear matrix inequalities (LMI). An numerical simulation is provided to show the effectiveness of the proposed conclusion.


2014 ◽  
Vol 556-562 ◽  
pp. 5400-5403
Author(s):  
Lan Liu ◽  
Xun He Yin

For Networked Control System (NCS) with random network-induced delay and packet loss, an observer is designed to reconstruct the states using output values. A piece-wise time-delay strategy and the timestamp technique are used, improving the system performance. Depending on whether data dropout occurs or not, system is modeled as an Asynchronous Dynamical System (ADS), and theorem guaranteeing the system closed-loop stability is also given. Based on Lyapunov and Linear Matrix Inequality (LMI), controller gain and observer gain are solved and TrueTime toolbox is used to verify the effectiveness of the algorithm.


Author(s):  
S. Vimal Kumar ◽  
R. Sakthivel ◽  
M. Sathishkumar ◽  
S. Marshal Anthoni

This paper investigates the problem of robust finite time extended passive reliable filtering for Takagi–Sugeno (T–S) fuzzy systems with randomly occurring uncertainties, missing measurements, and time-varying delays. Moreover, two stochastic variables satisfying the Bernoulli random distribution are introduced to characterize the phenomenon of the randomly occurring uncertainties and missing measurements. By skillfully choosing a proper Lyapunov–Krasovskii functional (LKF), a new set of sufficient conditions in terms of linear matrix inequalities (LMI) is derived to ensure that the filtering error system is robustly stochastically finite time bounded (SFTB) with a desired extended passive performance index. Based on the obtained sufficient conditions, an explicit expression for the desired filter can be computed. Finally, two numerical examples are provided to show the effectiveness of the proposed filter design technique.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chaoyang Dong ◽  
Aojia Ma ◽  
Qing Wang ◽  
Zhaolei Wang

This paper is concerned with the robust fault-tolerant tracking control problem for networked control system (NCS). Firstly, considering the locally overlapped switching law widely existed in engineering applications, the NCS is modeled as a locally overlapped switched polytopic system to reduce designing conservatism and solving complexity. Then, switched parameter dependent fault-tolerant tracking controllers are constructed to deal with the asynchronous switching phenomenon caused by the updating delays of the switching signals and weighted coefficients. Additionally, the global uniform asymptotic stability in the mean (GUAS-M) and desired weightedl2performance are guaranteed by combining the switched parameter dependent Lyapunov functional method with the average dwell time (ADT) method, and the feasible conditions for the fault-tolerant tracking controllers are obtained in the form of linear matrix inequalities (LMIs). Finally, the performance of the proposed approach is verified on a highly maneuverable technology (HiMAT) vehicle’s tracking control problem. Simulation results show the effectiveness of the proposed method.


2021 ◽  
Vol 26 (1) ◽  
pp. 93-112
Author(s):  
Youmei Zhou ◽  
Yajuan Liu ◽  
Jianping Zhou ◽  
Zhen Wang

The issue of quantized passive filtering for switched delayed neural networks with noise interference is studied in this paper. Both arbitrary and semi-Markov switching rules are taken into account. By choosing Lyapunov functionals and applying several inequality techniques, sufficient conditions are proposed to ensure the filter error system to be not only exponentially stable, but also exponentially passive from the noise interference to the output error. The gain matrix for the proposed quantized passive filter is able to be determined through the feasible solution of linear matrix inequalities, which are computationally tractable with the help of some popular convex optimization tools. Finally, two numerical examples are given to illustrate the usefulness of the quantized passive filter design methods.


Author(s):  
Ismail Errachid ◽  
Abdelaziz Hmamed

This paper is concerned with the stability and Robust stabilization problem for 2-D continuous systems in Roesser model, based on Generalized Kalman$-$Yakubovich$-$Popov lemma in combination with frequency-partitioning approach. Sufficient conditions of stability of the systems are formulated via linear matrix inequality technique. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document