Energy Consumption Forecasting Using United Grey System–Bayesian Regularization Neural Network Model

2012 ◽  
Vol 524-527 ◽  
pp. 3087-3092 ◽  
Author(s):  
Xiao Hui Hu ◽  
Lv Jun Zhan ◽  
Yun Xue ◽  
Gui Xi Liu ◽  
Zhe Fan

The energy consumption of the enterprise is subject to various factors. To solve the problem, a new grey-neural model is proposed which effectively combines the grey system and Bayesian-regularization neural network and avoids the disadvantages of each other. The case study indicates that the prediction method is not only reasonable in theory but also owns good application value in the energy consumption prediction. Meanwhile, results also exhibit that G-BRNN model has the automated regularization parameter selection capability and may ensure the excellent adaptability and robustness.

2019 ◽  
Vol 118 ◽  
pp. 04010
Author(s):  
Heng-jie Li ◽  
Zhen Qiao ◽  
Wei Chen ◽  
Xian-qiang Zeng ◽  
Long Wu

In order to solve the problem of high energy consumption of public buildings and optimize and improve energy conservation of public buildings, we built a building energy consumption prediction model based on NAR neural network prediction technology improved by BP neural network algorithm, and the energy consumption value is predicted. The large public buildings as the research object, the key factors to determine the effect of building energy consumption and collect the corresponding data processing, as the input parameters of neural network prediction public buildings energy consumption value, according to the actual situation will eventually NAR prediction of neural network and BP network prediction method and the comparative analysis the measured data. The results show that NAR neural network can predict the energy consumption of public buildings more accurately than BP neural network under different building parameters.


2021 ◽  
Vol 13 (24) ◽  
pp. 13918
Author(s):  
Jianhua Cao ◽  
Xuhui Xia ◽  
Lei Wang ◽  
Zelin Zhang ◽  
Xiang Liu

Accurate and rapid prediction of the energy consumption of CNC machining is an effective means to realize the lean management of CNC machine tools energy consumption as well as to achieve the sustainable development of the manufacturing industry. Aiming at the drawbacks of existing CNC milling energy consumption prediction methods in terms of efficiency and precision, a novel milling energy consumption prediction method based on program parsing and parallel neural network is proposed. Firstly, the relationship between CNC program and energy consumption of CNC machine tool is analyzed. Based on the structural characteristics of the CNC program, an automatic parsing algorithm for the CNC program is proposed. Moreover, based on the improved parallel neural network, the mapping relationship between the energy consumption parameters of each CNC instruction and the milling energy consumption is constructed. Finally, the proposed method is compared with the literature to verify the superiority of the proposed method in terms of prediction efficiency and accuracy, and the practicability of the method is verified through the case study. The proposed method lays the foundation for efficient and low-consumption process planning and energy efficiency improvement of machine tools and is conducive to the sustainable development of the environment.


Author(s):  
A. Syahputra

Surveillance is very important in managing a steamflood project. On the current surveillance plan, Temperature and steam ID logs are acquired on observation wells at least every year while CO log (oil saturation log or SO log) every 3 years. Based on those surveillance logs, a dynamic full field reservoir model is updated quarterly. Typically, a high depletion rate happens in a new steamflood area as a function of drainage activities and steamflood injection. Due to different acquisition time, there is a possibility of misalignment or information gaps between remaining oil maps (ie: net pay, average oil saturation or hydrocarbon pore thickness map) with steam chest map, for example a case of high remaining oil on high steam saturation interval. The methodology that is used to predict oil saturation log is neural network. In this neural network method, open hole observation wells logs (static reservoir log) such as vshale, porosity, water saturation effective, and pay non pay interval), dynamic reservoir logs as temperature, steam saturation, oil saturation, and acquisition time are used as input. A study case of a new steamflood area with 16 patterns of single reservoir target used 6 active observation wells and 15 complete logs sets (temperature, steam ID, and CO log), 19 incomplete logs sets (only temperature and steam ID) since 2014 to 2019. Those data were divided as follows ~80% of completed log set data for neural network training model and ~20% of completed log set data for testing the model. As the result of neural model testing, R2 is score 0.86 with RMS 5% oil saturation. In this testing step, oil saturation log prediction is compared to actual data. Only minor data that shows different oil saturation value and overall shape of oil saturation logs are match. This neural network model is then used for oil saturation log prediction in 19 incomplete log set. The oil saturation log prediction method can fill the gap of data to better describe the depletion process in a new steamflood area. This method also helps to align steam map and remaining oil to support reservoir management in a steamflood project.


2020 ◽  
Vol 131 ◽  
pp. 109980 ◽  
Author(s):  
X.J. Luo ◽  
Lukumon O. Oyedele ◽  
Anuoluwapo O. Ajayi ◽  
Olugbenga O. Akinade ◽  
Hakeem A. Owolabi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document