High Energy, High Efficiency Nd: Glass Regenerative Amplifier

2012 ◽  
Vol 529 ◽  
pp. 105-109 ◽  
Author(s):  
X.F. Wang ◽  
Z.W. Fan ◽  
J. Yu ◽  
Z.H. Shi ◽  
T.Z. Zhao ◽  
...  

To obtain high energy, high efficiency Nd: glass preamplifier used in certain host device, a Nd:glass regenerative amplifier system has been designed. By adjusting the single pass gain and carefully optimizing the cavity mode, the small-scale self-focusing effect in the gain medium was effectively controlled. Maximum pulse energy of 21mJ, pulse width of 2.6ns was obtained at the repetition frequency of 1Hz, corresponding to a high optical to optical conversion efficiency of 11% and amplification ratio of 108. The pulse to pulse energy stability was < 2% rms during 2 h continous operation. The laser has a good beam quality of M2=1.5. The spectrum was measured to be at center wavelength of 1052.915nm.

2020 ◽  
Vol 8 ◽  
Author(s):  
Ning Ma ◽  
Meng Chen ◽  
Ce Yang ◽  
Shang Lu ◽  
Xie Zhang ◽  
...  

We report high-energy, high-efficiency second harmonic generation in a near-infrared all-solid-state burst-mode picosecond laser at a repetition rate of 1 kHz with four pulses per burst using a type-I noncritical phase-matching lithium triborate crystal. The pulses in each burst have the same time delay ( ${\sim}1~\text{ns}$ ), the same pulse duration ( ${\sim}100~\text{ps}$ ) and different relative amplitudes that can be adjusted separately. A mode-locked beam from a semiconductor saturable absorber mirror is pulse-stretched, split into seed pulses and injected into a Nd:YAG regenerative amplifier. After the beam is reshaped by aspheric lenses, a two-stage master oscillator power amplifier and 4f imaging systems are applied to obtain a high power of ${\sim}100~\text{W}$ . The 532 nm green laser has a maximum conversion efficiency of 68%, an average power of up to 50 W and a beam quality factor $M^{2}$ of 3.5.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 783
Author(s):  
Hiromitsu Kiriyama ◽  
Alexander S. Pirozhkov ◽  
Mamiko Nishiuchi ◽  
Yuji Fukuda ◽  
Akito Sagisaka ◽  
...  

Ultra-high intensity femtosecond lasers have now become excellent scientific tools for the study of extreme material states in small-scale laboratory settings. The invention of chirped-pulse amplification (CPA) combined with titanium-doped sapphire (Ti:sapphire) crystals have enabled realization of such lasers. The pursuit of ultra-high intensity science and applications is driving worldwide development of new capabilities. A petawatt (PW = 1015 W), femtosecond (fs = 10−15 s), repetitive (0.1 Hz), high beam quality J-KAREN-P (Japan Kansai Advanced Relativistic ENgineering Petawatt) Ti:sapphire CPA laser has been recently constructed and used for accelerating charged particles (ions and electrons) and generating coherent and incoherent ultra-short-pulse, high-energy photon (X-ray) radiation. Ultra-high intensities of 1022 W/cm2 with high temporal contrast of 10−12 and a minimal number of pre-pulses on target has been demonstrated with the J-KAREN-P laser. Here, worldwide ultra-high intensity laser development is summarized, the output performance and spatiotemporal quality improvement of the J-KAREN-P laser are described, and some experimental results are briefly introduced.


2008 ◽  
Vol 25 (2) ◽  
pp. 521-523 ◽  
Author(s):  
Liu Xue-Sheng ◽  
Wang Zhi-Yong ◽  
Yan Xin ◽  
Cao Ying-Hua

2016 ◽  
Vol 8 (1) ◽  
pp. 1-8
Author(s):  
Zilong Zhang ◽  
Qiang Liu ◽  
Mingming Nie ◽  
Encai Ji ◽  
Mali Gong

2019 ◽  
Vol 9 (2) ◽  
pp. 219
Author(s):  
Xuesheng Liu ◽  
Huan He ◽  
Yiheng Song ◽  
Congcong Wang ◽  
Zhiyong Wang

We have demonstrated a high pulse energy and high optic–optic efficiency double-pass picosecond (ps) master oscillator power amplifier system of 1064 nm at a pulse repetition rate of 500 kHz. A 500 kHz, 7.68 μJ picosecond laser is used as the seed laser. Through one stage double-pass traveling-wave amplifier, a maximum output power of 16.19 W at a pump power of 31.7 W is generated with the optic–optic efficiency of 51.07%. The output pulse duration is 17.6 ps, corresponding to the pulse energy of 32.38 μJ. The beam quality factor M 2 were measured to be 1.28 and 1.17 along the x, y axis direction, respectively.


Laser Physics ◽  
2010 ◽  
Vol 21 (1) ◽  
pp. 52-56 ◽  
Author(s):  
L. Tong ◽  
Z. Zhao ◽  
L. Cui ◽  
C. Liu ◽  
J. Chen ◽  
...  

1998 ◽  
Vol 37 (Part 2, No. 5B) ◽  
pp. L583-L586
Author(s):  
Tae Moon Jeong ◽  
Eung Cheol Kang ◽  
Byung Tai Kim ◽  
Chang Hee Nam

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Ahmad ◽  
S. N. Aidit ◽  
S. I. Ooi ◽  
M. Z. Samion ◽  
S. Wang ◽  
...  

AbstractIn this work, a Figure-9 (F9) bismuth-doped fiber laser (BiDFL) operating in the dissipative soliton resonance (DSR) regime is presented. The 1338 nm laser used a BiDF as the active gain medium, while a nonlinear amplifying loop mirror (NALM) in an F9 configuration was employed to obtain high energy mode-locked pulses. The wave breaking-free rectangular pulse widened significantly in the time domain with the increase of the pump power while maintaining an almost constant peak power of 0.6 W. At the maximum pump power, the mode-locked laser delivered a rectangular-shaped pulse with a duration of 48 ns, repetition rate of 362 kHz and a radio-frequency signal-to-noise ratio of more than 60 dB. The maximum output power was recorded at around 11 mW with a corresponding pulse energy of 30 nJ. This is, to the best of the author’s knowledge, the highest mode-locked pulse energy obtained at 1.3 μm as well as the demonstration of an NALM BiDFL in a F9 configuration.


2012 ◽  
Vol 39 (8) ◽  
pp. 0802002
Author(s):  
王小发 Wang Xiaofa ◽  
樊仲维 Fan Zhongwei ◽  
余锦 Yu Jin ◽  
石朝辉 Shi Zhaohui ◽  
赵天卓 Zhao Tianzhuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document