Effect of Rare Earth on Inclusions and Impact Property of Ferrite Stainless Steel

2012 ◽  
Vol 535-537 ◽  
pp. 662-665
Author(s):  
Xiao Liu ◽  
Zhi Jie Fan

The effects of RE metals on the inclusions and the impact property of 430 ferrite stainless steel were studied by metallographic examination, scanning electron microscope (SEM) and energy spectrum analysis. The results show that the morphologies and sizes of inclusions in 430 ferrite stainless steel are changed, and RE played a very good role of modifying inclusions. The fracture mode of 430 ferrite stainless steel is typical cleavage fracture, but quasi-cleavage and dimple fracture after adding RE into the steel. The transverse impact property of 430 ferrite stainless steel is improved obviously by RE. In comparison with 430 ferrite stainless steel without RE, the transverse impact property of 430 ferrite stainless steel with RE is increased 38.53% at -20°C, respectively.

2012 ◽  
Vol 174-177 ◽  
pp. 1344-1348
Author(s):  
Xiao Liu ◽  
Long Mei Wang

The effects of rare earth metals on the inclusions and the mechanical properties of 2Cr13 stainless steel were studied by metallographic examination, scanning electron microscope (SEM) and energy spectrum analysis. The results show that the morphologies and sizes of inclusions in 2Cr13 stainless steel are changed, and rare earth metals played a very good role of modifying inclusions. The fracture mode of 2Cr13 stainless steel is typical cleavage fracture, but quasi-cleavage and dimple fracture after adding Ce into the steel, and the spherical inclusions of rare earth oxysulfide in the dimple are the main factors for this transformation. The transverse impact toughness of 2Cr13 stainless steel is improved obviously by Ce. In comparison with 2Cr13 stainless steel without Ce, the transverse impact toughness of 2Cr13 stainless steel with Ce is increased 54.55% at -40°C, and the room temperature strength are improved, the elongation and reduction of area have been improved 11.90%, 16.67 respectively.


2013 ◽  
Vol 711 ◽  
pp. 99-102
Author(s):  
Xiao Liu ◽  
Jing Long Liang

The effects of rare earth metals on the inclusions and the mechanical properties of 21Cr11Ni austenitic steel were studied by scanning electron microscope (SEM) and energy spectrum analysis. The results show that the morphologies and sizes of inclusions in 21Cr11Ni stainless steel are changed, and rare earth played a very good role of modifying inclusions. The fracture mode of 21Cr11Ni stainless steel is typical cleavage fracture, but quasi-cleavage and dimple fracture after adding RE into the steel. The transverse impact toughness of 21Cr11Ni stainless steel is improved obviously by RE. In comparison with 21Cr11Ni stainless steel without RE, the transverse impact toughness of 21Cr11Ni stainless steel with RE is increased 25.33% at-40°C, and the room temperature strength are improved, the elongation and reduction of area have been improved 9.18%, 12.71% respectively.


2012 ◽  
Vol 557-559 ◽  
pp. 96-99
Author(s):  
Xiao Liu ◽  
Zhi Hui Li

The effect of rare earth element on structure and mechanical properties of SS400 steel were studied by metallographic examination, scanning electron microscope (SEM), tensile test and impact test. The results show that rare earth can refine microstructure of SS400 steel. Fracture is changed from cleavage to ductile fracture by adding RE to SS400 steel. And the mechanical properties of SS400 are improved. The impact toughness value of SS400 steel (containing 0.02 RE) increases by 39.66% at -40°C, and at 0°C the impact toughness value increases by 31.05%, respectively comparing with that of steel without RE.


2013 ◽  
Vol 690-693 ◽  
pp. 110-113
Author(s):  
Xiao Liu ◽  
Hong Wang Dong

The effect of rare earth element on structure and mechanical properties of the 430 ferrite stainless steel was studied by metallographic examination, scanning electron microscope (SEM), tensile test and impact test. The results show that the proper amount of RE can refine microstructure of 430 ferrite stainless steel. The fracture mode of 430 ferrite stainless steel is typical dimple fracture. 430 ferrite stainless steel containing 0.056% RE can improve its impact toughness and the high temperature strength, and the transverse impact toughness increases 37.2% at 253K respectively comparing with that of 430 ferrite stainless steel without RE. And at 1273K, the high temperature strength increases by 38.3% than that of 430 ferrite stainless steel without RE.


2012 ◽  
Vol 503-504 ◽  
pp. 463-468 ◽  
Author(s):  
Xiao Liu ◽  
Long Mei Wang

The effects of rare earth metals on the inclusions and the mechanical properties of 2205 duplex stainless steel were studied by metallographic examination, scanning electron microscope (SEM) and energy spectrum analysis. The results show that the morphologies and sizes of non-metallic inclusions in 2205 duplex stainless steel are changed, and rare earth metals played a very good role of modifying inclusions. The fracture mode of 2205 duplex stainless steel is typical cleavage fracture, but quasi-cleavage and dimple fracture after adding RE into the steel, and the spherical inclusions of rare earth oxysulfide in the dimple are the main factors for this transformation. The transverse impact toughness of 2205 duplex stainless steel is improved obviously by RE. In comparison with 2205 duplex stainless steel without RE, the transverse impact toughness of 2205 duplex stainless steel with RE is increased 20.49% at -40°C, and the room temperature strength are improved, the elongation and reduction of area have been improved 11.67%, 24.55% respectively.


2013 ◽  
Vol 711 ◽  
pp. 95-98
Author(s):  
Xiao Liu ◽  
Jing Long Liang

The effect of Ce on structure and mechanical properties of 21Cr11Ni austenitic stainless steels were studied by metallographic examination, scanning electron microscope (SEM), tensile test. The results show that the proper amount of Ce can refine microstructure of austenitic stainless steel. Fracture is changed from cleavage to ductile fracture by adding Ce to austenitic stainless steel. 21Cr11Ni stainless steel containing 0.05% Ce can improve its high temerature strength, and the strength is increased 21.81% at 1073K respectively comparing with that of 21Cr11Ni stainless steel without Ce.


1976 ◽  
Vol 31 ◽  
pp. 275-278 ◽  
Author(s):  
K. Nagel ◽  
H. Fechtig ◽  
E. Schneider ◽  
G. Neukum

AbstractDuring the Skylab experiment S 149 three different sets of areas were exposed. 71.5 cm2 were facing the sun for 46 days, and 36 cm2 for 33 days, whereas 77.5 cm2 were exposed in anti-solar direction for 34 days. A fourth set is currently being exposed with the hope of future recovery. The exposed surfaces consisted of stainless steel, aluminium, platinum, glass, and pyroxene. The recovered targets have been investigated with a light microscope and a scanning electron microscope. We found two groups of possible impact structures:1.) Five craters between 1 and 30 µm. These craters show clear signs of hypervelocity impact. Measurements yielded diameter to depth ratios between 2 and 3. Chemical investigations in the craters yielded an enhancement in aluminium in one case.2.) 44 crater-like structures between 1 and 4 (µm in diameter. These features have been found on 4 cm2 of pyroxene exposed in solar direction. They show diameter to depth ratios between 5 and 8. Chemical measurements of the interior of these structures indicate the elements of the pyroxene composition.The five impacts of the first group correspond to a cumulative flux of the order of 10−4 (m−2s−l) for masses of about 10−12 g. The second group may indicate a fragmentation process at altitudes around 450 km. Considering these 44 crater-like structures having been produced by fragments of one projectile, the impact rate could be comparable to that calculated for the first group. If individual projectiles had produced these structures, the corresponding flux could be 2 orders of magnitude higher.


2013 ◽  
Vol 662 ◽  
pp. 424-427 ◽  
Author(s):  
Xiao Liu ◽  
Jing Long Liang

The effect of rare earth element on structure and mechanical properties of 2205 duplex stainless steel were studied by metallographic examination, scanning electron microscope (SEM), tensile test and impact test. The results show that the proper amount of rare earth can refine microstructure of 2205 duplex stainless steel. Fracture is changed from cleavage to ductile fracture by adding RE to 2205 duplex stainless steel. 2205 duplex stainless steel containing 0.05% RE can improve its impact toughness, and the transverse impact toughness is increased 15.56% at -20°C respectively comparing with that of 2205 duplex stainless steel without RE.


2014 ◽  
Vol 900 ◽  
pp. 92-95
Author(s):  
Sheng Xu Liu ◽  
Yi Qiang Xiao ◽  
Ming Long Kang ◽  
Jian Min Zeng ◽  
Guo An Wang ◽  
...  

The effect of different tempering temperatures on microstructure and impact property of 20CrMnTi steel has been studied on Zwick/roell Amsler PKP 450 pendulum machine, SU-8020 scanning electron microscope (SEM) and optical microscope. The results shows that the impact property of 20CrMnTi steel is dramatically improved after high-temperature tempering. However, the minimum value occurs when it was tempered at 350°C because of low-temperature tempering brittlement at this degree. The SEM fracture morphology was typical dimples after high temperature tempering, and the type of fracture was ductile fracture; the type of cleavage characteristic and quasi cleavage characteristic were generated on the fracture morphology at low-temperature and medium-temperature tempering respectively, and the type of fracture was brittle.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


Sign in / Sign up

Export Citation Format

Share Document