Optimization of Measuring Points for High-Speed Motorized Spindle Thermal Error

2012 ◽  
Vol 538-541 ◽  
pp. 2113-2116
Author(s):  
Wei Dong Gou ◽  
Xin Wei Ye ◽  
Chun Li Lei ◽  
Zhi Yuan Rui

According to the location and number of temperature measuring points of the motorized spindle thermal error, a new method for optimizing the locations of thermal key points is proposed. Firstly, temperature measuring points are divided into groups by using fuzzy clustering method. Secondly, grey correlation model is adopted to analyze emphasis of each measuring point to thermal deformation in temperature field distribution of motorized spindle. Finally, temperature measuring points have been optimally selected based on modified coefficient of determination. Comparing to the conclusion of the existed literature, the results show that this method is feasibility and validity. The method can reduce the temperature variables and modeling time, and supply the theoretic support for the engineering experience.

2010 ◽  
Vol 129-131 ◽  
pp. 556-560 ◽  
Author(s):  
Chun Li Lei ◽  
Zhi Yuan Rui

In a lot of factors, thermal deformation of motorized high-speed spindle is a key factor affecting the manufacturing accuracy of machine tool. In order to reduce the thermal errors, the reasons and influence factors are analyzed. A thermal error model, that considers the effect of thermodynamics and speed on the thermal deformation, is proposed by using genetic algorithm-based radial basis function neural network. The improved neural network has been trained and tested, then a thermal error compensation system based on this model is established to compensate thermal deformation. The experiment results show that there is a 79% decrease in motorized spindle errors and this model has high accuracy.


2013 ◽  
Vol 437 ◽  
pp. 36-41
Author(s):  
Kai Kang Chen ◽  
Fu Ping Li ◽  
Yong Sheng Zhao

Thermal deformation of high-speed motorized spindle has an important effect on improving the machining accuracy. In this paper the thermal boundary conditions of thermal deformation, including the heat generation of the motor and bearing and heat transfer coefficient, are calculated to simulate the steady-state temperature field distribution, transient thermal analysis and thermal deformation in ANSYS Workbench. They provide theoretically the data for the thermal error compensation of the spindle system.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110208
Author(s):  
Yuan Zhang ◽  
Lifeng Wang ◽  
Yaodong Zhang ◽  
Yongde Zhang

The thermal deformation of high-speed motorized spindle will affect its reliability, so fully considering its thermal characteristics is the premise of optimal design. In order to study the thermal characteristics of high-speed motorized spindles, a coupled model of thermal-flow-structure was established. Through experiment and simulation, the thermal characteristics of spiral cooling motorized spindle are studied, and the U-shaped cooled motorized spindle is designed and optimized. The simulation results show that when the diameter of the cooling channel is 7 mm, the temperature of the spiral cooling system is lower than that of the U-shaped cooling system, but the radial thermal deformation is greater than that of the U-shaped cooling system. As the increase of the channel diameter of U-shaped cooling system, the temperature and radial thermal deformation decrease. When the diameter is 10 mm, the temperature and radial thermal deformation are lower than the spiral cooling system. And as the flow rate increases, the temperature and radial thermal deformation gradually decrease, which provides a basis for a reasonable choice of water flow rate. The maximum error between experiment and simulation is 2°C, and the error is small, which verifies the accuracy and lays the foundation for future research.


2011 ◽  
Vol 52-54 ◽  
pp. 2021-2026
Author(s):  
Gui Ling Deng ◽  
Can Zhou

Thermal deformation is an important factor to affect the accuracy of the motorized spindle, the core component of high-speed machine tool. To understand the spindle system transient thermal characteristics of the high-speed turning center CH7516GS, some high-precision sensors and high-frequency data acquisition system is used to establish the temperature and displacement measuring system. The thermal deformation compensation model is established on the basis of the experimental test results.


2017 ◽  
Vol 69 (6) ◽  
pp. 1049-1065 ◽  
Author(s):  
Zhe Liu ◽  
Wei Chen ◽  
Desheng Li ◽  
Wenjing Zhang

Purpose In high-speed processing, the influence on the machining accuracy of a machine tool is greatly caused by the thermal deformation of the motorized spindle; a further study on the thermal characteristics of the spindle is given in this paper. This study aims to reduce the thermal error and improve the performance of the machine tool by discussing the relationships between the temperature distributions and rotating accuracy caused by the thermal deformations of the spindle. Design/methodology/approach The paper opted for a method combining the theoretical analysis and the experimental study to study the thermal stability of the high-speed motorized spindle. First of all, a finite element model of the spindle was built with ANSYS, whereby temperature distributions and the thermal deformations were successively obtained at different speeds. And then, both the temperature field and the rotating accuracy of the motorized spindle were measured simultaneously by the thermal stability experiment. Finally, the experimental and theoretical results were compared and validated. Findings The thermal stability of the motorized spindle was studied in this paper, and some findings from the study were as follows: the spindle’s rotating accuracy maintained good in X direction but bad in Y and Z directions in terms of the deformations; the higher front-end temperature of the spindle which can significantly affect the rotating accuracy is needed to be controlled mainly; the recovery speed of the spindle deformation lagged behind the temperature’s fallback speed; the vibration graph about radial rotating sensitivity synthesized by X1 and X2 presented a trifoliate shape. Originality/value Based on a built test-bed which can synchronously measure the motorized spindle’s temperature distribution and rotating accuracy with five-point method, the coupling effects of the thermal deformation and temperature are embodied, and not only the vibration graph but also the thermal tilt angles can be gained. Therefore, considering the influence of the thermal deformation on the heat generated by the bearings, the paper fulfilled a study by which it was obtained that the front-end temperature of the spindle, which was higher and could significantly affect the rotating accuracy, needed to be controlled mainly.


2013 ◽  
Vol 339 ◽  
pp. 510-514
Author(s):  
Yan Yan Shi ◽  
Mao Qiang Zhang ◽  
Xiang Feng Kong ◽  
Jin Hua Li

Aim to the working properties of aviation accessory transmission gear, such as high speed and heavy load, temperature field distribution regularity of standard involute cylindrical gear is analyzed based on indirect coupling analysis method of ANSYS software. And gear surface contact stress distribution regularity under the action of thermal loading and mechanical load is also analyzed. Gear surface real contact condition under working station is analyzed. It is shown from the result that the high speed and heavy loading on the gear teeth produces the bigger temperature gradient, and thermal deformation regularity of gear teeth is determined by temperature field distribution style, while thermal deformation of gear teeth changes contact condition and stress distribution regularity between meshing gear surfaces.


2010 ◽  
Vol 455 ◽  
pp. 33-36 ◽  
Author(s):  
C.Q. Li ◽  
Xiao Dong Zhang ◽  
Q. Zhang ◽  
H. Li

To solve the problems that the thermal deformation of the High-Grade CNC machine tool has much effect on accuracy and quality of the produces, the structure characteristics of the high speed motorized spindle is firstly introduced in this paper. Then one type of motorized spindle and supporting structure are selected, and the thermal boundary parameters are calculated. Much more the static and transient temperature field are simulated by using FEA software ANSYS in one working condition. At last, the main measures to improve the uneven temperature field and the plans to reduce the thermal deformation are put forward, which are provided some technical bases for the equipment to achieve the high-speed and high-precision machining.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 286
Author(s):  
Zhaolong Li ◽  
Bo Zhu ◽  
Ye Dai ◽  
Wenming Zhu ◽  
Qinghai Wang ◽  
...  

High-speed motorized spindle heating will produce thermal error, which is an important factor affecting the machining accuracy of machine tools. The thermal error model of high-speed motorized spindles can compensate for thermal error and improve machining accuracy effectively. In order to confirm the high precision thermal error model, Beetle antennae search algorithm (BAS) is proposed to optimize the thermal error prediction model of motorized spindle based on BP neural network. Through the thermal characteristic experiment, the A02 motorized spindle is used as the research object to obtain the temperature and axial thermal drift data of the motorized spindle at different speeds. Using fuzzy clustering and grey relational analysis to screen temperature-sensitive points. Beetle antennae search algorithm (BAS) is used to optimize the weights and thresholds of the BP neural network. Finally, the BAS-BP thermal error prediction model is established. Compared with BP and GA-BP models, the results show that BAS-BP has higher prediction accuracy than BP and GA-BP models at different speeds. Therefore, the BAS-BP model is suitable for prediction and compensation of spindle thermal error.


Sign in / Sign up

Export Citation Format

Share Document