Preparation of Corncob-Based Bio-Char and its Application in Removing Basic Dyes from Aqueous Solution

2012 ◽  
Vol 550-553 ◽  
pp. 2420-2423 ◽  
Author(s):  
Run Fang

This study presents the preparation of corncob-based bio-char and its application in adsorptive removal of three basic dyes (methylene blue, crystal violet and basic fuchsin) from aqueous solution. The adsorption behavior of basic dyes on bio-char was investigated via batch experiments. Experimental results showed that the adsorption efficiency of bio-char increased with increasing solution pH and temperature. Thermodynamic parameters demonstrated the spontaneous and endothermic nature of the adsorption. The dye removal process fitted the Langmuir isotherm well. The adsorption capacity of bio-char for methylene blue, crystal Violet and basic fuchsin at 25°C was calculated to be 126.58, 81.96 and 75.18 mg/g, respectively.

2011 ◽  
Vol 236-238 ◽  
pp. 125-129
Author(s):  
Run Fang ◽  
Xian Su Cheng

This study evaluated the potential application of a biomass material, corncob lignocellulose (CL), as a novel adsorbent for the removal of basic dyes from aqueous solutions. The adsorption behavior and mechanism of basic dyes on CL was investigated via batch experiments. Both adsorption and desorption studies showed that the attachment of basic dyes onto CL was ascribed to a combined interaction involving electrostatic attraction and chemisorption. The decolorization efficiency of CL increased with increasing solution pH and temperature. Thermodynamic parameters demonstrated the spontaneous and endothermic nature of the adsorption. The dye uptake process was best described by the Langmuir isotherm. The adsorption capacity of CL for Methylene blue, Crystal Violet and Malachite Green at 30°C was calculated to be 145.8, 121.8 and 65.7 mg/g, respectively.


2021 ◽  
Vol 13 (7) ◽  
pp. 3600
Author(s):  
Muhammad Tahir Amin ◽  
Abdulrahman Ali Alazba ◽  
Muhammad Shafiq

Eucalyptus camdulensis biochar (Ec-bio) was used to adsorb crystal violet (CV) and methylene blue (MB) dyes, which was optimized and further evaluated using different isotherm and kinetic models. Microscopy and spectroscopy techniques showed the interactions of the dyes with the surface functional groups of the Ec-bio, resulting in the removal of the dyes from aqueous solution. Both dyes were immediately uptaken, with equilibrium reached in 60 min, with a higher sorption efficiency of CV compared to MB. Thermodynamic parameters showed endothermic adsorption and the nonspontaneous adsorption of both dyes onto the Ec-bio. Both the adsorption capacity and percentage removal increased with the increasing solution pH from 2.0 to 4.0 and to 10 for CV and MB. An increase in adsorption capacity was observed upon increasing the initial concentrations, with a corresponding decrease in the percentage removal. The pseudo-second-order (PSO) and Elovich kinetic models (nonlinear approach) were a good fit to the data of both dyes, confirming a chemisorptive adsorption process. The Langmuir isotherm fitted well to the CV data, supporting its monolayer adsorption onto the Ec-bio, while the Freundlich isotherm was a good fit to the MB dye data, suggesting the surface heterogeneity of the Ec-bio. The Dubinin–Radushkevich isotherm was a good fit to the adsorption CV data compared with the MB dye, suggesting the physisorption of both dyes onto the Ec-bio due to its mean free energy of adsorption of <8 kJ mol−1.


2014 ◽  
Vol 625 ◽  
pp. 241-244 ◽  
Author(s):  
Massoud Kermanioryani ◽  
Lukman B. Ismail ◽  
Mohammed Ibrahim Abdul Mutalib ◽  
Ghodsieh Bagherzadeh

The frequent usage of cationic dyes is in the textile and leather industries. However, they are not only utilized during the dying process, but also they are recovered at the end of the process. Hence, the removal of dye from huge quantity of wastewater is necessary. In this paper methylene blue as a cationic dye have been extracted successfully into an ionic liquid namely 1-hexyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide, abbreviated as [HMIM][TF2N]. To investigate the feasibility of using (IL) to dye removal from aqueous solutions batch experiments were performed under different process conditions like initial dye concentration, pH and temperature. Also adsorption data were analyzed using isotherms models and was found to conform to the principle of Lagmuir model with good correlation coefficients (R2 = 0.9896).


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Ramona B. J. Ihlenburg ◽  
Anne-Catherine Lehnen ◽  
Joachim Koetz ◽  
Andreas Taubert

New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.


2021 ◽  
pp. 50655
Author(s):  
Aafia Tehrim ◽  
Min Dai ◽  
Xiange Wu ◽  
Malik Muhammad Umair ◽  
Imran Ali ◽  
...  

2013 ◽  
Vol 31 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Ponnusamy Senthil Kumar ◽  
Maria Jacob Stani Raja ◽  
Mahathevan Kumaresan ◽  
Dinesh Kumar Loganathan ◽  
Prabhakaran Chandrasekaran

Sign in / Sign up

Export Citation Format

Share Document