Investigation on Free-Wheel Hub for Starter Rotary Forming Process and Die Design Based on Numerical Simulation

2012 ◽  
Vol 557-559 ◽  
pp. 2155-2158
Author(s):  
Ping Wang ◽  
Liang Li

Free-wheel hub plays an important role in automobile starter system, so there is higher quality requirement on geometry and precision. In order to improve the efficiency and comprehensive functions of the part, according to the features of the lower part with involute small module internal helical spline, the rotary forming technology was put forward, and the forming process was simulated by the DEFORM-3D software. In the die design, the use of rotary punch made the process of rotary forming achieved in common hydraulic press, and can serve as an important reference to the design of forming process and die structure of similar part.

2011 ◽  
Vol 396-398 ◽  
pp. 134-139
Author(s):  
An Long ◽  
Rui Ge ◽  
Yi Sheng Zhang ◽  
Li Bo Pan

To conclude the mechanics of fine blanking, the numerical simulation model of a cam’s fine blanking process was established, the forming process was simulated by DEFORM-3D software, the deform principle was summarized. Then the effect of three key processing parameters such as gap between punch and die, pressure-pad-force/counter force, serrated ring postion to fine blanking quality were researched, optimized parameters in fine blanking were gained.


2012 ◽  
Vol 497 ◽  
pp. 356-364
Author(s):  
Qing Hua Yang ◽  
Jun Pan ◽  
Jun Xiong Zhang ◽  
Wen Biao Chen ◽  
Bin Meng

A three-layers assembled cavity die and its technological measures were designed for cold extrusion forming for the bevel gear. Numerical simulation of the cold extrusion forming process was applied using Deform-3D software, load curve, velocity field, stress field and temperature field were analyzed, thus obtain the basic knowledge of the law of the bevel gear deformation. Subsequent targets for optimization were introduced, aiming to solve the remaining problems of the current cold extrusion forming. The accomplished work shows some significance in guiding how to design a die and its technological measures.


2012 ◽  
Vol 580 ◽  
pp. 37-41
Author(s):  
Qiong Lin ◽  
Bin Meng ◽  
Qing Hua Yang

The numerical simulation for spur gear vibration extrusion is performed in this paper. The metal flow characteristic and load-stroke relationship during forming process is analyzed and then compared with traditional metal extrusion process. The results revealed the axial vibration of cavity die can both reduce forming load and benefit for metal flow, which could achieve better forming quality. Finally according to the processing requirements, the vibration generator and whole extrusion die structure is designed.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 747 ◽  
Author(s):  
Nikola Sibalic ◽  
Milan Vukcevic

This paper presents the numerical simulation of the Friction stir welding (FSW) process obtained by using the DEFORM 3D software package. Numerical simulations are based on experimental research, welding of aluminum alloy AA6082-T6 by FSW method, which has the thickness of 7.8 mm. The aim of this paper is to determine the reliability of numerical simulations in the FSW process, which is followed by large deformations, where influential geometric and kinematic parameters are varied. Numerical research was done on the basis of the adopted five-phase orthogonal experimental plan with a variety of factors on two levels and repetition at the central point of the plan for four times. The parameters varied in the experiment are: Welding speed v mm/min, a rotation speed of tool ω rpm, angle of pin slopes α o, a diameter of the pin d mm, diameter of the shoulder D mm. During the performing of the FSW process, forces were measured in three normal directions: Axial force Fz, longitudinal force Fx and side force Fy, as well as the temperature in the adopted measuring positions of the workpiece. The experimental results obtained in this way were compared with the numerical experiment in the same adopted measuring positions, i.e., in the paper an analysis and comparison of the obtained experimental and numerical data of the measured forces and the generated temperature field were made.


2013 ◽  
Vol 753-755 ◽  
pp. 928-931 ◽  
Author(s):  
Guo Qiang Zhang ◽  
Ji Qiang Zhai ◽  
Ting Hao ◽  
Wen Juan Wang ◽  
Xu Biao Yang ◽  
...  

Numerical simulation in the 200ml beverage can forming process was carried out by means of computer aided engineering. Beverage can drawing production process parameters and a forecast for the production process of all sorts of possible defects were obtained. Based on the results of the simulation, we can improve die structure and process method. Thus the development costs of die will be reduced. The manufacturing time of die will be shortened. The purpose of reducing the cost of production can be achieved ultimately.


2012 ◽  
Vol 472-475 ◽  
pp. 692-695
Author(s):  
Jian Hua Wang ◽  
Fu Xiao Chen

By analyzing the characteristics and forming technology of hypoid driving gear, it was suitable for adopting fully enclosed die forging principle to form the gear. Based on different forging methods, three kinds of blank shape and corresponding forming schemes were designed. The three dimensional models of blank and die were created by the UG software. The three forming schemes were simulated by the Deform-3D software. The simulation results of distribution of equivalent stress, distribution of equivalent strain and load-stroke curve were comparatively analyzed. Then the most reasonable scheme was chosen. At last, the rationality of numerical simulation can be further verified by the optimized scheme was proved by experiment.


2009 ◽  
Vol 16-19 ◽  
pp. 462-465
Author(s):  
Yong Fei Gu ◽  
Jun Ting Luo

The precision forming technology developed rapidly during passing two decades, however technologies of precision plastic forming the parts with deeper hole are far behind developed countries. The warm backward extrusion-ironing forming technology was presented for precision forming of non-circular hole joint in this paper. The forming process and parameter variable trend were simulated by finite element method, which the software MSC.Marc was applied. The forming die was designed and the forming experiment was finished. The products were deserved with good quality and performance. The feasibility of the forming technology is proved by experimental results and numerical simulation.


2011 ◽  
Vol 117-119 ◽  
pp. 1719-1722
Author(s):  
Yong Shun Yang ◽  
Tian Tian Yin ◽  
Ke Feng

In the paper, the Deform-3D software was used to simulate the mechanism of metal flow behaviour under the influence of different friction in the backward extrusion process, and further study its influence on die stress. The numerical simulation demonstrates that: smaller friction could reduce difficult deformation area of extrusion metal significantly; friction state not only affected the plastic deformation extent, but also would increase the consumption of extrusion energy; the unit pressure of punch and stress of inner wall increased along with the increase of friction, meanwhile, the ratio of them increased as well.


2013 ◽  
Vol 365-366 ◽  
pp. 561-564
Author(s):  
Jian Jun Wang ◽  
Su Lan Hao ◽  
Lu Pan ◽  
Yan Ming Zhang

In view of large load, the shape of large crank forgings and forging process are designed reasonably. Large crank forging process is simulated by numerical simulation software DEFORM-3D to improve the forging process and the dies, including adding upsetting step and related dies. The result shows that improved process and dies can obtain higher quality finish forgings and the load reduces to a rational level, which provides basis for crank forging process and die design.


2011 ◽  
Vol 130-134 ◽  
pp. 2388-2391
Author(s):  
Fang Liu ◽  
Lu Yun Zhang

In order to study the deformation characteristics of the blade rotor in the precision forming, by means of the plastic forming software DEFORM-3D, the forming process is simulated. It is concluded that (1) the change of the stress and strain in different stages was simulated during the entire forming process. (2) Based on the stress and strain distributions, the analysis of the metal flow rule and the mechanism of the filling mold was proceeded to find that the properties of the blade rotor can be enhanced by means of the precision forming.


Sign in / Sign up

Export Citation Format

Share Document