Genetic Programming for Grinding Surface Roughness Modelling

2012 ◽  
Vol 565 ◽  
pp. 183-189
Author(s):  
Xun Chen ◽  
Asma Alabed

Grinding process is commonly selected for finishing operation because grinding has high accuracy and surface finish with a relatively high material removal rate. One of the most common issues in grinding process planning is to determine grinding condition for required surface roughness. This paper presents a feasibility study on grinding surface roughness modelling using genetic programming (GP) method. It has successfully demonstrated that GP could provide reliable prediction and has advantages over other established methods in terms of dealing with missing data during modelling process.

2019 ◽  
pp. 089270571985060
Author(s):  
Muhammad Mukhtar Liman ◽  
Khaled Abou-El-Hossein ◽  
Lukman Niyi Abdulkadir

Due to increasing demand for high accuracy and high-quality surface finish in optical industry, contact lens manufacturing requires reliable models for predicting surface roughness (Ra) which plays a very important role in the optical manufacturing industry. In this study, a Nanoform 250 ultra-grind turning machine was used for machining, while cutting speed, feed rate, and the depth of cut (with values selected to cover a wide range based on the literature) were considered as the machining parameters for a diamond turned rigid polymethylmethacrylate (PMMA) contact lens polymer. Turning experiments were designed and conducted according to Box–Behnken design which is a response surface methodology technique. Fuzzy logic-based artificial intelligence method was employed to develop an electrostatic charge (ESC), Ra, and material removal rate (MRR) prediction models. The accuracy and predictive ability of the fuzzy logic model was then judged by considering an average percentage error between experimental values and fuzzy logic predictions. Further, a comparative evaluation of experiments and fuzzy logic approach showed that the average errors of ESC, Ra, and MRR using fuzzy logic system were in tandem with experimental results. Hence, the developed fuzzy logic rules can be effectively utilized to predict the ESC, Ra, and MRR of a rigid PMMA contact lens polymers in automated optical manufacturing environments for high accuracy and computational cost.


2010 ◽  
Vol 126-128 ◽  
pp. 551-556
Author(s):  
Choung Lii Chao ◽  
Ying Ching Hsiao ◽  
Wen Chen Chou ◽  
Chia Wei Kuo ◽  
Wen Lang Lai ◽  
...  

This research aimed to design and develop a polishing system for precision polishing mini roller mold to nanometer surface finish. An experimental polishing system was built in the present study to polish nickel plated specimens with various polishing compounds. The polished specimens were subsequently examined by Alfa-step, OM and SEM for surface finish, morphology and microscopic analysis respectively. The obtained surface condition and material removal rate were correlated to the polishing parameters such as spindle speed, abrasive concentration, and abrasive grit size for the improvement of the polishing effect. Mini-rollers of 5mm in diameter, 50mm in length were successfully polished to a surface roughness better than 2nm Ra in several hours without damaging the roundness and cylindricalness using abrasive of 0.3μm, 10,000rpm polishing speed and 0.5mm gap distance between polisher and the specimen. A semi-empirical model of polishing was also developed in the study for predicting the materials removal rate.


Author(s):  
César Oswaldo Aguilera-Ojeda ◽  
Alberto Saldaña-Robles ◽  
Agustín Vidal-Lesso ◽  
Israel Martínez-Ramírez ◽  
Eduardo Aguilera-Gómez

Abstract The surface finish of industrial components has an important role in their performance and lifetime. Therefore, it is crucial to find the cutting parameters that provide the best surface finish. In this work, an experimental study of the effect of cutting parameters on ultra-high molecular weight polyethylene (UHMWPE) by a turning process was carried out. Today, the UHMWPE polymer continues to find applications mainly in the automotive industry and biomechanics because it is resistant to impact and corrosive materials to use. A face-centered Central Composite Design (CCD) and Response Surface Methodology (RSM) were applied to evaluate the influence of the cutting speed (Vc), feed rate (f) and depth of cut (ap) of the turning operation on the Average Surface Roughness (Ra) and Material Removal Rate (MRR). Results allowed obtaining an adjusted multivariable regression model that describes the behavior of the Ra that depends on the cutting parameters in the turning process. The predictive model of Ra showed that it fits well with a correlation coefficient (R2) around 0.9683 to the experimental data for Ra. The ANOVA results for Ra showed that the feed is the most significant factor with a contribution of 42.3 % for the term f 2, while the speed and depth of cut do not affect Ra with contributions of 0.19% and 0.18%, respectively. A reduction of feed from 0.30 to 0.18 mm·rev−1 produces a decrease in surface roughness from 6.68 to 3.81 μm. However, if the feed continued to reduce an increase in surface roughness, a feed of 0.05 mm·rev−1 induces a surface roughness of 14.93 μm. Feeds less than 0.18 mm·rev−1 cause a heat generation during turning that increases the temperature in the process zone, producing surface roughness damage of the UHMWPE polymer. Also, the results for MRR demonstrated that all of the cutting parameters are significant with contributions of 31.4%, 27.4% and 15.4% to feed, speed, and depth of cut, respectively. The desirability function allowed optimizing the cutting parameters (Vc = 250 m·min−1, ap = 1.5 mm y f = 0.27 mm·rev−1) to obtain a minimum surface roughness (Ra = 4.3 μm) with a maximum material removal rate (MMR = 97.1 cm3·min−1). Finally, the predictive model of Ra can be used in the industry to obtain predictions on the experimental range analyzed, reducing the surface roughness and the manufacturing time of UHMWPE cylindrical components.


Author(s):  
Do Duc Trung

This study presentes a combination method of several optimization techniques and Taguchi method to solve the multi-objective optimization problem for surface grinding process of SKD11 steel. The optimization techniques that were used in this study were Multi-Objective Optimization on basis of Ratio Analysis (MOORA) and Complex Proportional Assessment (COPRAS). In surface grinding process, two parameters that were chosen as the evaluation creterias were surface roughness (Ra) and material removal rate (MRR). The orthogonal Taguchi L16 matrix was chosen to design the experimental matrix with two input parameters namely workpiece velocity and depth of cut.  The two optimization techniques that mentioned above were applied to solve the multi-objective optimization problem in the grinding process. Using two above techniques, the optimized results of the cutting parameters were the same. The optimal workpiece velocity and cutting depth were 20 m/min and 0.02 mm. Corresponding to these optimal values of the workpiece velocity and cutting depth, the surface roughness and material removal rate were 1.16 µm and 86.67 mm3/s. These proposed techniques and method can be used to improve the quality and effectiveness of grinding processes by reducing the surface roughness and increasing the material removal rate.


2020 ◽  
Vol 10 (18) ◽  
pp. 6314
Author(s):  
Fengping Li ◽  
Yao Xue ◽  
Zhengya Zhang ◽  
Wenlei Song ◽  
Jiawei Xiang

Surface roughness and the material removal rate (MRR) are two important indicators during the grinding process. The former determines the surface quality while the latter reflects the grinding efficiency directly. In this paper, the two indicators are taken into consideration simultaneously and differently by converting them into a comprehensive goal with using weighting objective method. A prediction model was established for each comprehensive goal with each different combination of surface roughness and MRR weighting coefficient. The optimal value of abrasive size, contact force, belt linear speed, and feed speed were obtained under different grinding situations by using a central composite design (CCD) combined with response surface analysis. The experimental results showed that the comprehensive goal can be used effectively as an indicator to control the grinding performance and improve the optimization process.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4704
Author(s):  
Nelli Vladimirovna Syreyshchikova ◽  
Danil Yurievich Pimenov ◽  
Munish Kumar Gupta ◽  
Krzysztof Nadolny ◽  
Khaled Giasin ◽  
...  

Belt grinding of flat surfaces of typical parts made of steel and alloys, such as grooves, shoulders, ends, and long workpieces, is a good alternative to milling. Several factors can influence the belt grinding process of flat surfaces of metals, such as cutting speed and pressure. In this work, the importance of pressure in the belt grinding was investigated in terms of technological and experimental aspects. The grinding experiments were performed on structural alloy steel 30KhGSN2/30KhGSNA, structural carbon steel AISI 1045, corrosion-resistant and heat-resistant stainless steel AISI 321, and heat-resistant nickel alloy KHN77TYuR. The performance of the grinding belt was investigated in terms of surface roughness, material removal rate (MRR), grinding belt wear, performance index. Estimated indicators of the belt grinding process were developed: cutting ability; reduced cutting ability for belt grinding of steels and heat-resistant alloy. It was found that with an increase in pressure p, the surface roughness of the processed surface Ra decreased while the tool wear VB and MRR increased. With a decrease in plasticity and difficulty of machinability, the roughness, material removal rate, reduced cutting capacity (Performance index) qper, material removal Q decreased, and the tool wear VB increased. The obtained research results can be used by technologists when creating belt grinding operations for steels and alloys to ensure the required performance is met.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


Sign in / Sign up

Export Citation Format

Share Document