Synthesis and Characterization of Ag - Soda Glass Nanocomposites

2012 ◽  
Vol 585 ◽  
pp. 120-123
Author(s):  
Jyoti Rozra ◽  
Isha Saini ◽  
Sanjeev Aggarwal ◽  
Annu Sharma

In the present work we have used Physical vapour deposition (PVD) technique followed by thermal annealing to synthesize Ag-soda glass nanocomposite samples. This technique offers a great deal of promise in terms of general simplicity of operation, minimal requirements for sample preparation, ease of adaptation to automated operation, and potential for scale up to production levels of material throughput. Ag-glass nanocomposites were synthesized by deposited Ag on glass slides and the resulting samples were annealed in air at various temperatures from 400 °C to 550 °C for 1 hour. Optical absorption spectrum of the resulting nanocomposites was measured in the range from 190 nm to 900 nm using UV-Visible absorption spectroscopy. The appearance of SPR peak characteristic of Ag nanoparticle formation around 420 nm in optical spectra of annealed samples indicates towards the formation of silver nanoparticles in soda glass. The size of silver nanoparticles has been found to increase with increase in annealing temperatures. Structural properties of resulting nanocomposites were also studied using TEM and FE-SEM alongwith EDAX spectra. Synthesized composites are more conducting than pristine glass and conductivity increases with increase in size of Ag nanoparticles embedded in glass. Possible mechanism for increase in conductivity has been discussed.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Moira Carmalita Dharsika Niluxsshun ◽  
Koneswaran Masilamani ◽  
Umaramani Mathiventhan

Wide application of nanoparticles motivates the need for synthesising them. Here, a nontoxic, eco-friendly, and cost-effective method has been established for the synthesis of silver nanoparticles using extracts of lemon peel (Citrus limon), green orange peel (Citrus sinensis), and orange peel (Citrus tangerina). The synthesised nanoparticles have been characterised using UV-visible absorptionspectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM). The UV-visible absorption spectrum of these synthesised silver nanoparticles shows an absorption peak at around 440 nm. TEM images show different shaped particles with various sizes. Furthermore, the antibacterial activity of silver nanoparticles was appraised by a well-diffusion method and it was observed that the green synthesised silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be beneficial for nanotechnology-based biomedical applications.


2020 ◽  
Vol 2 (1) ◽  
pp. 24

Silver nanoparticles (Ag-NPs) were prepared by the biological reduction method. Green tea extract was taken as a reducing and stabilizing agent and silver nitrate as the metal precursor for nanoparticle synthesis. The formation of the silver nanoparticles was monitored visually and using UV-Visible absorption spectroscopy. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, FTIR, Zeta sizer, Zeta potential, and antimicrobial studies. Silver nanoparticles were also subjected to investigate nanocatalytic activity with standard pancreatic alpha-amylase and bacterial amylase enzyme by the DNS assay method. UV-Vis spectroscopy revealed the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 430 nm. Four major functional groups of bio-molecules such as phenol, carboxylic acid, protein, and alkyl group were recorded in FTIR spectra. The size of the nanoparticles ranges between 5nm and 150nm. The average size and size distribution of silver nanoparticles is 59.66nm. The zeta potential of the silver nanoparticle is negatively charged and rendered as a sharp peak at -31.7mV. Antimicrobial activity of silver nanoparticles exhibited the highest inhibition against Gram-negative bacteria than Gram-positive bacteria and yeast pathogens. Starch hydrolysis of Ag-NPs was studied with pancreatic alpha-amylase (tailor made), crude and purified bacterial amylase enzyme. The formation of reducing sugar was increased about 40-fold for a purified enzyme, 11-fold for the pancreatic enzyme, and 6-fold for crude bacterial enzyme incorporated with Ag-NPs over control. The present studies recommended that Ag-NPs have a significant role in the degradation of starch into reducing sugars by acting as a nanocatalyst.


2014 ◽  
Vol 1081 ◽  
pp. 161-164
Author(s):  
Xue Mei Li ◽  
Zheng Guan ◽  
Hong Ling Liu ◽  
Jun Hua Wu ◽  
Xian Hong Wang ◽  
...  

FeAu/ZnO nanoparticles were successfully synthesized by nanoemulsion process with the use of poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) as the surfactant. The characterization of the FeAu/ZnO nanoparticles was performed using X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy, showing that the polymer-laced nanoparticles reveal high crystallinity, excellent dispersibility and well defined optical performance. The process of solvent dispersion-collection of FeAu/ZnO nanoparticles indicates that the nanoparticles possess good magnetic property for applications.


Vacuum ◽  
2019 ◽  
Vol 163 ◽  
pp. 148-157 ◽  
Author(s):  
Nabendu Kumar Deb ◽  
Kushal Kalita ◽  
S.R. Abhilash ◽  
Pankaj K. Giri ◽  
Rohan Biswas ◽  
...  

2019 ◽  
Vol 60 ◽  
pp. 154-161
Author(s):  
Raad Sh. Alnayli ◽  
Hanan Alkazaali

In this work we study the influence of the laser pulses silver nanoparticles productivity during laser ablation of silver immersed in liquid. Ag nanoparticles were synthesized by pulsed laser ablation of Ag targets in ethanol using the (1064 nm, Q-switched, Nd:YAG) laser with energy of 140 mJ per pulse. UV-Visible absorption spectra were used for the characterization and comparison of products. The non-linear refractive index and absorption coefficient of silver nanoparticles were investigated using a single beam z-scan technique; the excitation source was a continuous wave (CW) of 650 nm diode laser with a beam power of 50 mW. All investigated samples showed negative-induced non-linear refractive indices.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 159-165
Author(s):  
Leszek A. Dobrzański ◽  
Marek Szindler ◽  
Mirosława Pawlyta ◽  
Magdalena M. Szindler ◽  
Paulina Boryło ◽  
...  

AbstractThe following paper presents the possibility of formation of Pt nanowires, achieved by a three-step method consisting of conformal deposition of a carbon nanotube and conformal coverage with platinum by physical vapour deposition, followed by removal of the carbonaceous template. The characterization of this new nanostructure was carried out through scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD).


2007 ◽  
Vol 202 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Carlo Giolli ◽  
Francesca Borgioli ◽  
Alberto Credi ◽  
Alberto Di Fabio ◽  
Alessio Fossati ◽  
...  

2020 ◽  
Author(s):  
Sharath Chandra Thota ◽  
Bathini Sreelatha

AbstractIn the developing world, Nanotechnology became an efficient method in therapeutics, antimicrobials, diagnostics, catalysis, microelectronics, and high sensitivity biomolecular detection. As well as on the other hand, Exopolysaccharides are biopolymers which are also widely used in food formulation, bio- flocculants, bio-absorbents, drug delivery agents. As the chemical methods of synthesizing nanoparticles and polymers are environmentally risky, costly, and toxic. In the present study, we focused on production, purification, and characterization of silver nanoparticles (AgNPs) and exopolysaccharide (EPS) by eco-friendly, extracellular biosynthetic methods using novel thermophilic Bacillus amyloliquefaciens strain Ts-1. This strain was isolated from soil samples by employing pour and spread plate techniques. After obtaining pure culture, the bacterium was used for the synthesis of AgNPs and EPS. Nanoparticles were synthesized from AgNO3 by using reducing agents secreted by bacteria, and Exopolysaccharide biosynthesis is carried out in three steps by the organism in the presence of a carbon source. Synthesis of colloidal AgNPs and EPS was monitored by UV-Visible spectroscopy and Visual observation, respectively. SEM, Edax and FTIR were performed for the characterization of the AgNPs and EPS such as their size, morphology and composition and we also showed the catalytic activity of AgNps in degradation of methylene blue.


2015 ◽  
Vol 1 (2) ◽  
pp. 133
Author(s):  
Gustini Syahbirin ◽  
Ani Suryani ◽  
Tesar Dzikrulloh

 ABSTRACT Lignin was isolated from waste black liquor of soda pulping process. Sulfonation of soda lignin produced Sodium Lignosulfonate (NaLS) which can be used as dispersants, and concrete admixtures. In this research, sulfonation was carried out towards lignin with ratio of lignin-NaHSO3 of 1.0:0.4; 1.0:0.5; and 1.0:0.6, and initial pH of 5.00; 6.00; 7.00. Parameters observed were purity, final pH, and yield of NaLS. The upsurge of initial pH increased the final pH and NaLS yield, but decreased its purity. The upsurge of ratio of lignin-NaHSO3 increased NaLS yield and decreased its purity, but did not affect the final pH of NaLS. The chosen optimum condition was on pH of 6.00 and ratio of lignin-NaHSO3 of 1.0:0.6. Characterization of functional group using FTIR, and purity of NaLS using UV-Visible Absorption Spectrophotometer. Keywords: soda lignin, sulfonation of lignin, sodium lignosulfonate 


Sign in / Sign up

Export Citation Format

Share Document