scholarly journals Nanocatalytic Activity of Silver Nanoparticles (Ag-Nps) Fabricated using Camellia sinensis (Linn) Tender Leaf Extract and their Characterization

2020 ◽  
Vol 2 (1) ◽  
pp. 24

Silver nanoparticles (Ag-NPs) were prepared by the biological reduction method. Green tea extract was taken as a reducing and stabilizing agent and silver nitrate as the metal precursor for nanoparticle synthesis. The formation of the silver nanoparticles was monitored visually and using UV-Visible absorption spectroscopy. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, FTIR, Zeta sizer, Zeta potential, and antimicrobial studies. Silver nanoparticles were also subjected to investigate nanocatalytic activity with standard pancreatic alpha-amylase and bacterial amylase enzyme by the DNS assay method. UV-Vis spectroscopy revealed the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 430 nm. Four major functional groups of bio-molecules such as phenol, carboxylic acid, protein, and alkyl group were recorded in FTIR spectra. The size of the nanoparticles ranges between 5nm and 150nm. The average size and size distribution of silver nanoparticles is 59.66nm. The zeta potential of the silver nanoparticle is negatively charged and rendered as a sharp peak at -31.7mV. Antimicrobial activity of silver nanoparticles exhibited the highest inhibition against Gram-negative bacteria than Gram-positive bacteria and yeast pathogens. Starch hydrolysis of Ag-NPs was studied with pancreatic alpha-amylase (tailor made), crude and purified bacterial amylase enzyme. The formation of reducing sugar was increased about 40-fold for a purified enzyme, 11-fold for the pancreatic enzyme, and 6-fold for crude bacterial enzyme incorporated with Ag-NPs over control. The present studies recommended that Ag-NPs have a significant role in the degradation of starch into reducing sugars by acting as a nanocatalyst.

2020 ◽  
Vol 10 (6) ◽  
pp. 6587-6596 ◽  

In the present study, silver nanoparticles (Ag-NPs) were synthesized by a chemical and biological method. Further, nanoparticles were characterized for their morphological feature using techniques like UV-Visible, TEM, XRD, and zeta potential. Sharp UV-visible absorption maximum at 410 was observed for biological synthesized silver nanoparticles (Bio-AgNPs), whereas for chemical synthesized silver nanoparticles (CH-AgNPs) peak was observed at 414 nm. TEM micrograph confirmed the formation of spherical nanoparticles dominantly via both protocols with an average size of nanoparticles was 50 nm and 25 nm for CH-AgNPs and Bio-NPs, respectively. Further, the antimicrobial potential of AgNPs was evaluated at different concentrations (25-100 ppm), against three pathogenic plant fungus plant (Alternaria solani, Corynespora cassiicola, and Fusarium spp.), in two different fungal media in term of inhibition of radial growth. Up to 100% inhibition for Alternaria solani and Fusarium spp. and 85% inhibition for Corynespora cassiicola was observed at 100 ppm AgNPs concentration on potato dextrose agar (PDA). Further, exposure of AgNPs on Drosophila melanogaster confirmed that Bio-AgNPs are nontoxic as compared to CH-AgNPS. Hence it can be concluded that Bio-AgNPs are safe to use due to their nontoxic nature.


2021 ◽  
Vol 10 (1) ◽  
pp. 412-420
Author(s):  
Mona S. Alwhibi ◽  
Dina A. Soliman ◽  
Manal A. Awad ◽  
Asma B. Alangery ◽  
Horiah Al Dehaish ◽  
...  

Abstract In recent times, research on the synthesis of noble metal nanoparticles (NPs) has developed rapidly and attracted considerable attention. The use of plant extracts is the preferred mode for the biological synthesis of NPs due to the presence of biologically active constituents. Aloe vera is a plant endowed with therapeutic benefits especially in skincare due to its unique curative properties. The present study focused on an environmental friendly and rapid method of phytosynthesis of silver nanoparticles (Ag-NPs) using A. vera gel extract as a reductant. The synthesized Ag-NPs were characterized by transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR), and dynamic light scattering (DLS). TEM micrographs showed spherical-shaped synthesized Ag-NPs with a diameter of 50–100 nm. The UV-Vis spectrum displayed a broad absorption peak of surface plasmon resonance (SPR) at 450 nm. The mean size and size distribution of the formed Ag-NPs were investigated using the DLS technique. Antibacterial studies revealed zones of inhibition by Ag-NPs of A. vera (9 and 7 mm) against Pseudomonas aeruginosa and Escherichia coli, respectively. Furthermore, the antifungal activity was screened, based on the diameter of the growth inhibition zone using the synthesized Ag-NPs for different fungal strains. Anticancer activity of the synthesized Ag-NPs against the mouse melanoma F10B16 cell line revealed 100% inhibition with Ag-NPs at a concentration of 100 µg mL−1. The phytosynthesized Ag-NPs demonstrated a marked antimicrobial activity and also exhibited a potent cytotoxic effect against mouse melanoma F10B16 cells. The key findings of this study indicate that synthesized Ag-NPs exhibit profound therapeutic activity and could be potentially ideal alternatives in medicinal applications.


2013 ◽  
Vol 873 ◽  
pp. 206-210
Author(s):  
Kai Li ◽  
Rao Fu ◽  
Qing Ran Gao ◽  
Ai Wei Tang ◽  
Ying Feng Wang

This paper continues our previous work on preparation of triangular silver nanoparticles. The method proceeds with reaction of silver nitrate with hydrazine hydrate in the presence of polyvinyl pyrrolidone in aqueous solution. Effects of the concentration of PVP on the morphologies of Ag NPs were systematically investigated. The obtained Ag NPs were characterized by transmission electron microscopy and UV-visible spectrophotometer. The results showed that, triangular Ag NPs with edge lengths in the range of 50-200 nm were obtained using PVP as protective agent with lower concentration. As the concentration of PVP increased, spherical Ag NPs with their sizes about 6.2 nm were prepared and triangular Ag NPs were not obtained. The formation mechanism of triangular Ag NPs has been studied. Ostwald ripening is the driving force on the conversion of spherical Ag NPs to triangular Ag NPs in the presence of PVP.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Moira Carmalita Dharsika Niluxsshun ◽  
Koneswaran Masilamani ◽  
Umaramani Mathiventhan

Wide application of nanoparticles motivates the need for synthesising them. Here, a nontoxic, eco-friendly, and cost-effective method has been established for the synthesis of silver nanoparticles using extracts of lemon peel (Citrus limon), green orange peel (Citrus sinensis), and orange peel (Citrus tangerina). The synthesised nanoparticles have been characterised using UV-visible absorptionspectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM). The UV-visible absorption spectrum of these synthesised silver nanoparticles shows an absorption peak at around 440 nm. TEM images show different shaped particles with various sizes. Furthermore, the antibacterial activity of silver nanoparticles was appraised by a well-diffusion method and it was observed that the green synthesised silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be beneficial for nanotechnology-based biomedical applications.


Author(s):  
N. I. Hulkoti ◽  
T. C. Taranath

In this study we describe the phytofabrication of AgNps through a green route as a cost-effective, instantaneous and an eco-friendly approach using Petrea volubilis L. stem broth. The influence of physico-chemical parameters - contact time, stem broth quantity, pH, temperature, and silver nitrate concentration were studied and optimised to engineer, nanoparticles of diverse sizes. Nanoparticles were characterized by UV-Vis spectroscopy, FTIR, XRD, Zeta potential, EDS, and HRTEM. The characterization using HRTEM showed that, the nanoparticles were spherical and with increase in contact time, stem broth quantity, pH, and temperature, the NPs size minimised whereas escalation in silver nitrate concentration, increased their size. Capping molecules were negatively charged and the NPs were passably stable according to zeta potential readings and they were crystalline as per XRD data. According to FTIR analysis, the bio reduction was attributed to alcohol, ethers, carboxylic acids, and esters. The highest anti-bacterial activity was observed against S. aureus and S. typhi whose ZOI diameter was 13 mm at 100?l in both bacteria. The highest anti-fungal activity of silver nanoparticles was observed against A. flavus whose ZOI diameter was 9 mm at 100?l compared to P. chrysogenum which is 3 mm at 100?l. The stem broth did not show any anti-microbial activity for the microbes. Anti-microbial activity of AgNPs is due to its small size and high surface area. Our findings clearly discloses that sizes of silver nanoparticles can be varied by varying the physico-chemical parameters and the small sized nanoparticles so formed are promising antimicrobial agents and has a great potential in various medical applications.


2018 ◽  
Vol 15 ◽  
pp. 377-383 ◽  
Author(s):  
S. Krishnakumar ◽  
P. Janani ◽  
S. Mugilarasi ◽  
Ganita Kumari ◽  
J. Bethanney Janney

Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Mahsa Eshghi ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Mohammad Najian ◽  
Hoda Jafarizadeh-Malmiri ◽  
...  

Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1–0.9 mL) and an amount of 1 mM AgNO3 solution (15–25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and −15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO3. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.


Author(s):  
Kashan Khan ◽  
Mohd Aamir Qureshi ◽  
Ameer Azam ◽  
Moinuddin ◽  
Javed Musarrat ◽  
...  

Aims: Globally Scientists are working to find more efficient antimicrobial drugs to treat microbial infections and kill drug-resistant bacteria. Background: Despite the availability of numerous antimicrobial drugs bacterial infections still poses a serious threat to global health. Due to a constant decline in the effectiveness of antibiotics owing to their repeated exposure as well as shortlasting antimicrobial activity, led to the demand for developing novel therapeutic agents capable of controlling microbial infections. Objective: In this study, we report antimicrobial activity of chemically synthesized silver nanoparticles (cAgNPs) augmented with ampicillin (amp) in order to increase antimicrobial response against Escherichia coli (gram –ve), Staphylococcus aureus (gram +ve) and Streptococcus mutans (gram +ve). Methods: Nanostructure, colloidal stability, morphology and size of cAgNPs before and after functionalization were explored by UV-vis spectroscopy, FT-IR, zeta potential and TEM. The formation and functionalization of cAgNPs was confirmed from UV-vis spectroscopy and FT-IR patterns. From TEM the average sizes of cAgNPs and cAgNP-amp were found to be 13 and 7.8 nm respectively, and change in colloidal stability after augmentation was confirmed from zeta potential values. The antimicrobial efficacies of cAgNP-amp and cAgNPs against E. coli S. aureus and S. mutans were studied by determining minimum inhibitory concentrations (MICs), zone of inhibition, assessment of viable and non-viable bacterial cells and quantitative assessment of biofilm. Results & Discussion: Our results revealed cAgNP-amp to be highly bactericidal compared to cAgNPs or amp alone. The nano-toxicity studies indicated cAgNP-amp to be less toxic compared to cAgNPs alone. Results: This study manifested that cAgNPs show synergistic antimicrobial effect when they get functionalized with amp suggesting their application in curing long-term bacterial infections.


2017 ◽  
Vol 57 (2) ◽  
pp. 194-200 ◽  
Author(s):  
Abdul A. Buhroo ◽  
Gousul Nisa ◽  
Syed Asrafuzzaman ◽  
Ram Prasad ◽  
Razia Rasheed ◽  
...  

AbstractThe present exploration is focused on the bio-fabrication of silver nanoparticles (Ag NPs) usingTrichodesma indicumaqueous leaf extract as a reducing agent. The synthesized Ag NPs were productively characterized by UV-vis spectroscopy, XRD, and TEM studies. The photosynthesis of Ag NPs was done at room temperature for 24 h and at 60°C. The green synthesis of spherical-shaped Ag NPs bio-fabricated fromT. indicumwith a face centred cubic structure showed average particle sizes of 20–50 nm, which is inconsistent with the particle size calculated by the XRD Scherer equation and TEM analysis. We further explored the larvicidal efficacy of biosynthesized Ag NPs with leaf extracts ofT. indicumagainstMythimna separata. The results showed that Ag NPs (20–50 nm) ofT. indicumpossess good larvicidal activity againstM. separatawith an LC50of 500 ppm. Thus, we can advocate that Ag NPs of 20–50 nm size extracted fromT. indicummay be considered in the pest management programme ofM. separatain future.


2019 ◽  
Vol 8 (1) ◽  
pp. 629-634 ◽  
Author(s):  
Amir Rahimirad ◽  
Afshin Javadi ◽  
Hamid Mirzaei ◽  
Navideh Anarjan ◽  
Hoda Jafarizadeh-Malmiri

Abstract Silver nanoparticles (Ag NPs) were synthesized using four pathogenic bacterial extracts namely, Bacillus cereus, E. coli, Staphylococcus aureus and Salmonella entericasubsp.enterica. Synthesis process were hydrothermally accelerated using temperature, pressure and heating time of 121°C, 1.5 bar ad 15 min. Physico- chemical characteristics of the fabricated Ag NPs, including, particle size, polydispersity index (PDI), zeta potential, broad emission peak (λmax) and concentration were evaluated using UV-Vis spectrophotometer and dynamic light scattering (DLS) particle size analyzer. Furthermore, main existed functional groups in the provided bacterial extracts were recognized using Fourier transform infrared spectroscopy. The obtained results revealed that two main peaks were detected around 3453 and 1636.5 cm-1, for all bacterial extracts, were interrelated to the stretching vibrations of hydroxyl and amide groups which those had key roles in the reduction of ions and stabilizing of the formed Ag NPs. The results also indicated that, Ag NPs with much desirable characteristics, including minimum particle size (25.62 nm) and PDI (0.381), and maximum zeta potential (-29.5 mV) were synthesized using S. e. subsp. enterica extract. λmax, absorbance and concentration values for the fabricated Ag NPs with this bacterial extract were 400 nm, 0.202% a.u. and 5.87 ppm.


Sign in / Sign up

Export Citation Format

Share Document