An Improved Ultra-Wideband, Ultra-Short Monocycle Pulse Generator

2012 ◽  
Vol 588-589 ◽  
pp. 781-784
Author(s):  
Bi Shang Liu ◽  
Jian Ming Zhou ◽  
Ju Zhou

This paper presents an improved ultra-wideband monocycle pulse generator circuit based on step recovery diode. This pulse generator circuit uses short-circuit microstrip transmission line to generate the Gaussian pulse the monocycle pulse. The improved pulse-shaping network employs two schottky diodes and a MESFET to suppress the pulse ringing. The SRD model was built in RF simulation software ADS, and then the design and simulation of the pulse generator circuit was accomplished using this model. The experiments showed an monocycle pulse of 400ps pulse width with good symmetry. The measured results agreed with the simulation.

2018 ◽  
Vol 8 (5) ◽  
pp. 3332-3337
Author(s):  
N. M. Khoa ◽  
D. D. Tung

The impact of thyristor controlled series capacitor (TCSC) on distance protection relays in transmission lines is analyzed in this paper. Voltage and current data are measured and collected at the relay locations to calculate the apparent impedance seen by distance protection relays in the different operating modes of the TCSC connected to the line. Short-circuit faults which occur at different locations on the power transmission line are considered in order to locate the fault for the purpose of evaluating the impact of TCSC on the distance protection relay. Matlab/Simulink simulation software is used to model the power transmission line with two sources at the two ends. Voltage source, transmission line, TCSC, voltage and current measurement, and discrete Fourier transform (DFT) blocks are integrated into the model. Simulation results show the impact of TCSC on the distance protection relay and determine the apparent impedance and fault location in the line.


2016 ◽  
Vol 9 (4) ◽  
pp. 741-745
Author(s):  
Arash Valizade ◽  
Pejman Rezaei ◽  
Ali Asghar Orouji

A new design of reconfigurable sub-nanosecond pulse generator (PG) with pulse shape selection ability is presented in this paper. Step recovery diode is used as the pulse sharpening device and the pulse shaping circuit consists of a controllable RC differentiator in which a single PIN diode is embedded, which provides two different switchable pulse shaping performances. The realized PG has a compact (10 × 12 mm2) simple structure and is easy to implement while generating Gaussian and monocycle pulses with 510 and 660 ps pulse width, respectively. The proposed pulse shaping method is versatile and can be effectively modified and reconfigured to generate more complicated pulse shapes such as polycycle signals. The measured results reveal that the proposed reconfigurable PG is suitable to be used in systems with pulse shape modulation that require sub-nanosecond pulses at low pulse repetition rates.


2006 ◽  
Vol 4 ◽  
pp. 247-250 ◽  
Author(s):  
X. Fan ◽  
G. Fischer ◽  
B. Dietrich

Abstract. This paper presents an implementation of an integrated Ultra-wideband (UWB), Binary-Phase Shift Keying (BPSK) Gaussian modulated pulse generator. VCO, multiplier and passive Gaussian filter are the key components. The VCO provides the carrier frequency of 4.1 GHz, the LC Gaussian filter is responsible for the pulse shaping in the baseband. Multiplying the baseband pulse and the VCO frequency shifts the pulse to the desired center frequency. The generated Gaussian pulse ocupppies the frequency range from 3.1 to 5.1 GHz with the center frequency at 4.1 GHz. Simulations and measured results show that this spectrum fulfills the mask for indoor communication systems given by the FCC (Federal Communications Commission, 2002). The total power consumption is 55 mW using a supply voltage of 2.5 V. Circuits are realized using the IHP 0.25 μm SiGe:C BiCMOS technology.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhaoyang Wu ◽  
Wei Lu ◽  
Enyan Ding ◽  
Xiangyang Bao ◽  
Zhoubing Yang ◽  
...  

A compact high-power ultra-wideband bipolar pulse generator based on a modified Marx circuit is designed, which is mainly composed of a primary power supply, Marx generator, sharpening and cutoff subnanosecond spark gap switches, and coaxial transmission lines. The Marx generator with modified circuit structure has thirty-two stages and is composed of eight disk-like modules. Each module consists of four capacitors, two spark gap switches, four charging inductors, and a mechanical support. To simplify the design of the charging structure and reduce the number of switches, four groups of inductors are used to charge the capacitors of the Marx generator, two of which are used for positive voltage charging and the other two for negative voltage charging. When the capacitor of each stage is charged to 35 kV, the maximum output peak voltage can reach 1 MV when the Marx generator is open circuit. The high-voltage pulse generated by the Marx generator charges the transmission line and forms a bipolar pulse through sharpening and cutoff switches. All transmission lines used for bipolar pulse generation have an impedance of 10 Ω. When the 950 kV pulse voltage generated by the Marx generator is fed into the transmission line, the bipolar pulse peak voltage can reach 390 kV, the center frequency of the pulse is about 400 MHz, and the output peak power is about 15.2 GW.


Author(s):  
Nontapat Channarong ◽  
Kritsapon Leelavattananon

This work presents a new pulse-shaping technique for an impulse-radio ultra-wideband (IR-UWB) transmitter which is intended for RFID tags and wireless sensor applications. The proposed pulse is derived from a rectangular pulse with its side-band energy suppressed in order to satisfy the FCC UWB regulation, in particular at low frequency band (3.1 - 4.8 GHz). To verify its effectiveness, the new pulse generator was designed in a 180-µm CMOS process. The simulation results indicate that the spectrum of the transmitted pulse can be fitted within the FCC UWB spectral mask. The total circuit consumes 926 µW at a 10 MHz pulse repetitive frequency (PRF).


2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Renfeng Jin ◽  
Subrata Halder ◽  
Walter R. Curtice ◽  
James C. M. Hwang ◽  
Choi L. Law

An ultra-wideband pulse generator was designed and fabricated in GaAs HBT IC technology. The generator includes delay and differential circuits to convert a TTL input into a Gaussian pulse signal as well as a Class-C amplifier to boost the pulse amplitude while compressing the pulse width. By adjusting the collector bias of the Class-C amplifier, the pulse amplitude can be varied linearly between 3.5 V and 11.5 V while maintaining the pulse width at 0.3 ± 0.1 nanosecond. Alternatively, by adjusting the base bias of the Class-C amplifier, the pulse width can be varied linearly between 0.25 ns and 0.65 ns while maintaining the pulse amplitude at 10 ± 1 V. Finally, the amplified Gaussian signal can be shaped into a monocycle signal by anL-Cderivative circuit. The present pulse generator compares favorably with pulse generators fabricated in CMOS ICs, step-recovery diodes, or other discrete devices.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000838-000843
Author(s):  
Cenk ATALAN ◽  
Eyup TONGEL

Coupling capacitors or DC blocks are essential tuning elements in RF/microwave applications. Their role becomes imperative in cascade amplifiers to isolate drain voltages of preceding MMIC from the gate voltage of the following chip where both RF and DC signals are carried through the same line. The purpose of this study is to explain the benefits of a newly designed thin film coupling capacitor called as transmission line metal-insulator-metal capacitor (TL MIM Cap), which serves as a DC block capacitor in microwave circuits. This novel structure provides a unique solution, which cannot be achieved with traditional single layer ceramic capacitor (SLC) structure. It combines two discrete circuit elements into one: “Microstrip transmission line of required length and width” with a “serially attached coupling capacitor”. Thin film capacitive layers ranged from 0.5pF to 50pF, which are typically needed for microwave frequencies within 1–40 GHz, constructed and embedded into 50 Ohm impedance transmission lines in series. Substrates like quartz, glass, or alumina can be used to minimize losses and to achieve higher RF/microwave performance. We used copper traces as conductive layers for optimal conductivity. After manufacturing TL MIM Caps, we tested several capacitance values for 1pF, 5pF, 15pF and 30pF corresponding to a wide frequency range. The RF tests we performed showed that TL MIM Caps exhibited a minimum of 20dB return loss and a maximum of 0.3 dB insertion loss at 1–40GHz range. We also found our technique comes with some workmanship advantages in high frequency circuit assembly as follows: Traditional coupling capacitor attachment with silver epoxy on top of a microstrip transmission line is a manual operation, which requires well trained and experienced technicians. In contrast, using the TL MIM Caps in our high frequency hybrid modules, we found that the process caused errors were eliminated such as the micro short circuit effect caused by conductive epoxy. Therefore we improved yield in assembly stage of the circuits. In addition, improvements are observed in production processes such as less consumption of adhesives (epoxy), no technician failure caused wastes, elimination of extra curing process to attach capacitors, no short circuit inspection, rework, or re-cure operations to fix assembly errors. Last but not least, blocking capacitors are embedded into the microstrip transmission lines in TL MIM Caps. This ensures that having the lowest possible impedance since very short wire bond exists from the bond pad of the TL MIM Cap to the adjacent circuit element.


Sign in / Sign up

Export Citation Format

Share Document