The Durability Failure of Pre-Damaged Concrete Induced by Mechanical Load

2012 ◽  
Vol 594-597 ◽  
pp. 1061-1065
Author(s):  
Fang Zhi Zhu ◽  
Fu Xiang Jiang ◽  
Jun Shang ◽  
Zhong Hua Bi

Chloride ion penetration and freezing and thawing damage are the two main factors that affect the durability of concrete structures. Through the chloride ion penetration test and freezing and thawing test of concrete specimens after tensile and compressive loading, the influence of load-induced damage on the long-term durability of concrete was studied. The results showed that the apparent chloride diffusion coefficient of concrete increased by 6.4% and 34%, and the surface chloride concentration increased 10% and 40%, respectively, both of which showed the "negative effect" when the uniaxial tensile load level reached the 65% and 75% of the ultimate capacity. However, with the increasing uniaxial compressive load level, the impact on the frost resistance of concrete experienced a transformation from the "positive effect" to the "negative effect".

2021 ◽  
Vol 10 (1) ◽  
pp. 504-517
Author(s):  
Peng Zhang ◽  
Hongsen Zhang ◽  
Guo Cui ◽  
Xiaodong Yue ◽  
Jinjun Guo ◽  
...  

Abstract Impact drop weight tests, rapid chloride migration coefficient tests, single-sided freeze–thaw tests, and mechanical property tests were performed to investigate the effect of the steel fiber (SF) content on the impact resistance and durability of concrete containing nano-SiO2 (NS). A fixed NS content of 3% and six SF contents in a range of 0–2.5% by volume were used. The impact resistance was measured based on the number of blows (N1, N2) and the impact energy. The durability of concrete includes its freeze–thaw resistance and chloride ion penetration resistance, which were appraised by the chloride ion diffusion coefficient (CDC) and relative dynamic elastic modulus (RDM), respectively. The ductility ratio was used to predict the impact resistance of concrete containing NS with different SF contents, and a linear relation between this ratio and the impact energy (R 2 = 0.853) was found. The experimental results indicated that SF could greatly improve the impact resistance of concrete. The addition of 2.0% SF increased N1 and N2 by 106 and 169%, respectively. In addition, an appropriate SF content significantly improved the durability of the concrete, including its frost resistance (especially in the middle and late freezing–thawing cycles) and chloride ion penetration resistance. An SF content of 1.5% was the optimum, decreasing the CDC of nano-concrete by 17.1% and minimizing the RDM loss. Moreover, the 1.5% SF content increased the compressive strength of concrete containing NS by 18.5%, whereas an SF content of 2.0% increased the splitting tensile strength and flexural strength by 77 and 20%, respectively. Furthermore, when the SF content exceeded a certain value, the improvement effect on these properties began to decrease and even became negative.


2014 ◽  
Vol 629-630 ◽  
pp. 587-592
Author(s):  
Yi Bo Yang ◽  
Zhao Qiong Lai ◽  
Li Tao Ai ◽  
Wen Ying Guo ◽  
Hong Jian Huang ◽  
...  

The usage of autoclaved PHC pile in chloride environment becomes common, so how to evaluate the resistance to chloride ion penetration of autoclaved PHC pile becomes urgent. This article Compare the resistance to chloride ion penetration of pile and pile concrete specimens based the Rapid Chloride Migration Synthesis Method and RCM. The results show that the Rapid Chloride Migration Synthesis Method is not suitable for pile, RCPT and RCM are suitable for pile; the resistance to chloride ion penetration of the pile inner and outer lateral concrete has a rather large different, so the sample must distinguish the direction when testing. Steel bar has little influence on the resistance to chloride ion penetration of autoclaved PHC pile, and the resistance to chloride ion penetration of pile outer lateral concrete is similar with pile concrete specimen, using pile concrete specimen to test the resistance to chloride ion penetration of autoclaved PHC pile is suitable. The chloride diffusion coefficient values have a good relationship with the electricity value, using the electricity value of square pile concrete specimen as commonly quality control way are suggested. The resistance to chloride ion penetration of pile can test the outer lateral concrete of pile or pile head, using the electricity value as daily quality control method and basis for project acceptance, and using RCM method as life assessment and basis for project acceptance.


2015 ◽  
Vol 18 (2) ◽  
pp. 427-440 ◽  
Author(s):  
Rui Vasco Silva ◽  
Jorge de Brito ◽  
Rui Neves ◽  
Ravindra Dhir

2012 ◽  
Vol 591-593 ◽  
pp. 2422-2427
Author(s):  
Juan Zhao

Considering the complexity of the chloride ion penetration in concrete exposed to marine environment, an integrated chloride penetration model coupled with temperature and moisture transfer is proposed. The governing equations and parameters embody fully the cross-impacts among thermal conduction, moisture transfer and chloride ion penetration. Furthermore, the four exposure conditions are classified based on the different contact with the aggressive marine environment, and then the micro-climate condition on the concrete surface is investigated according to the regional climate characteristics, therefore, a comprehensive analog simulation to the chloride penetration process is proposed. To demonstrate that the proposed numerical model can correctly simulate the chloride diffusion in concrete, the integrated chloride diffusion model is applied in reproducing a real experiment, finally the model gives good agreement with the experimental profiles, and it is proved the tidal zone exposure results in a more severe attack on the reinforcement


2021 ◽  
Vol 11 (20) ◽  
pp. 9456
Author(s):  
Changjoon Lee ◽  
Andres Salas Montoya ◽  
Hoon Moon ◽  
Hyunwook Kim ◽  
Chulwoo Chung

The present study investigated the influence of the hybridization of steel and polyolefin fiber on the mechanical performance and chloride ion penetration of base concrete designed for marine shotcreting purposes. The purpose of fiber hybridization is to reduce the risk of corrosion that might occur during service life. Sets of hybrid fiber reinforced base concrete, whose water to binder ratio was 0.338, were prepared. The fiber contents in the base concrete were 0.54 and 1.08 vol%, and the volume proportion of polyolefin fiber in the hybrid fiber varied from 0 to 100%. Although the effect of fiber hybridization was not clearly observed from the compressive strength, a synergetic effect which increased both the flexural strength and toughness occurred at a fiber content of 1.08 vol%. The optimum ratio of steel and polyolefin fiber was 50:50. With respect to chloride ion penetration, an increasing amount of steel fiber increased the amount of current passing through the base concrete specimen due to the presence of electrically conductive steel fiber. However, chloride ion diffusivity was not greatly affected by the presence of steel fiber.


Sign in / Sign up

Export Citation Format

Share Document