Effects of Substrate Temperature on Structure and Properties of Al-F Co-doped ZnO Thin Films

2012 ◽  
Vol 602-604 ◽  
pp. 1404-1408
Author(s):  
Rui Xin Ma ◽  
Shi Na Li ◽  
Guo Quan Suo

ZnO:(Al, F) thin films on glass substrates have been prepared by RF magnetron sputtering. The influence of substrate temperature on the microstructure,optical and electrical properties of ZnO(Al,F) films have been studied. The effects of substrate temperature on structure and optical and electronical properties of ZnO:Al:F thin films were investigated by XRD,SEM,UV-Visible spectrophotometry and four-point proble method.Experimental results indicate that substrate temperature affects the structure and properties of the thin films considerably.The lowest resistivity obtained in this study was 9.95×10-3 Ω∙cm for the film with average visible transmittance of 90% which was deposited at the substrate temperature of 300°C.

2015 ◽  
Vol 814 ◽  
pp. 601-606 ◽  
Author(s):  
Fei Huan ◽  
Jin Feng Leng ◽  
Zhi Chao Meng ◽  
Bin Sun ◽  
Wen Shuang He

ZnO doped Al2O3and ZrO2(ZAZO) thin films were deposited by the radio frequency magnetron sputtering on substrate temperature with 100°C, 150°C, 200°C, 250°C and 300°C. The surface morphology and electrical properties of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and four-probe tester. The results showed that the substrate temperature obviously influenced the grain size of ZAZO films. The ZnO thin film had the largest crystallization orientation for the (002) peak and the smallest FWHM value at substrate temperature of 250°C. As the temperature increasing, the resistance of films gradually decreased till reaching a minimum at 250°C and then rised. Due to the increasing of Al and Zr concentrations into ZnO lattice, the Al ions created an abundance number of free electrons in the ZnO lattice, and in turn, the electrical conductivity increased. In addition, the improvement of film in the crystalline state results in the film resistivity decreases.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 634 ◽  
Author(s):  
Yuan Tian ◽  
Lianguo Gong ◽  
Xueqian Qi ◽  
Yibiao Yang ◽  
Xiaodan Zhao

NiO is a widely used p-type semiconductor. The desired optical and electrical properties of NiO vary in different application fields. To modulate the properties of NiO, nitrogen (N)-doped NiO thin films were synthesized by reactive radio-frequency magnetron sputtering on ITO-coated glass substrates. The influence of substrate temperature on the properties of NiO was investigated. XRD studies indicated a cubic structure. With the increase of the substrate temperature, the average transmittance in the visible region gradually reduced from 90% to 50%. The bandgap energy narrowed from 3.5 to 3.08 eV. The intensity of the PL spectra weakened, and the electrical conductivity rose. Overall, changing the substrate temperature is an effective method to modulate the optical and electrical properties of N-doped NiO thin films.


2012 ◽  
Vol 602-604 ◽  
pp. 1399-1403
Author(s):  
Rui Xin Ma ◽  
Shi Na Li ◽  
Guo Quan Suo

Ti doped ITO (ITO:Ti) thin films were fabricated on glass substrates by RF magnetron sputtering using only one piece of ITO:Ti ceramic target at different substrate temperature (Ts). The effect of substrate temperature on structural, electrical, and optical properties of the films was investigated. It is confirmed that the resistivity of the films decreases with the increase of Ts till the minimum value of 2.5×10-4 Ω•cm and the transmittance in visible wavelengths is higher than 90%. "Blue shift" and "red shift" of UV absorption edge of the film were observed when Ts200 °CHeaders and footers


2011 ◽  
Vol 687 ◽  
pp. 70-74
Author(s):  
Cheng Hsing Hsu ◽  
His Wen Yang ◽  
Jenn Sen Lin

Electrical and optical properties of 1wt% ZnO-doped (Zr0.8Sn0.2)TiO4thin films prepared by rf magnetron sputtering on ITO/Glass substrates at different rf power and substrate temperature were investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were found to be sensitive to the deposition conditions, such as rf power and substrate temperature. The selected-area diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited ZST (111) orientation perpendicular to the substrate surface and the grain size as well as the deposition rate of the film increased with the increase in both the rf power and the substrate temperature. Optical transmittance spectroscopy further revealed high transparency (over 60%) in the visible region of the spectrum.


2014 ◽  
Vol 21 (01) ◽  
pp. 1450003 ◽  
Author(s):  
YUEHUI HU ◽  
YICHUAN CHEN ◽  
XIAOHUA ZHANG ◽  
DEFU MA ◽  
JUNXIANG WANG ◽  
...  

Li - W co-doped ZnO (LWZO) thin films were deposited on quartz glass substrates by RF magnetron sputtering technology. The properties of LWZO films deposited with varied substrate temperatures were investigated. When the substrate temperature was lower than 120°C — according to X-ray diffraction (XRD) patterns, films keep hexagonal wurtzite structure with the (002) plane as preferred orientation — the optical transmittance was higher than 85%. When the substrate temperature was higher than 120°C, the results of XPS and XRD show that W 6+ will work as donors, and the (101) peak appeared; the optical transmittance decreased slightly but still higher than 82%. Scanning electron microscope (SEM) and its two-dimensional Fourier transform images showed that films had smooth surface and columnar particles structure when the substrate temperature was lower than 120°C. The film surface became rougher and flaky-shaped particles structure could be observed when the substrate temperature was higher than 120°C. In addition, the lowest electrical resistivity of sample was 3.6 × 10-3 Ω ⋅ cm which was obtained at substrate temperature 240°C.


Sign in / Sign up

Export Citation Format

Share Document