EFFECTS OF SUBSTRATE TEMPERATURE ON THE DOPING CHARACTERISTICS OF Li-W CO-DOPED ZnO FILMS

2014 ◽  
Vol 21 (01) ◽  
pp. 1450003 ◽  
Author(s):  
YUEHUI HU ◽  
YICHUAN CHEN ◽  
XIAOHUA ZHANG ◽  
DEFU MA ◽  
JUNXIANG WANG ◽  
...  

Li - W co-doped ZnO (LWZO) thin films were deposited on quartz glass substrates by RF magnetron sputtering technology. The properties of LWZO films deposited with varied substrate temperatures were investigated. When the substrate temperature was lower than 120°C — according to X-ray diffraction (XRD) patterns, films keep hexagonal wurtzite structure with the (002) plane as preferred orientation — the optical transmittance was higher than 85%. When the substrate temperature was higher than 120°C, the results of XPS and XRD show that W 6+ will work as donors, and the (101) peak appeared; the optical transmittance decreased slightly but still higher than 82%. Scanning electron microscope (SEM) and its two-dimensional Fourier transform images showed that films had smooth surface and columnar particles structure when the substrate temperature was lower than 120°C. The film surface became rougher and flaky-shaped particles structure could be observed when the substrate temperature was higher than 120°C. In addition, the lowest electrical resistivity of sample was 3.6 × 10-3 Ω ⋅ cm which was obtained at substrate temperature 240°C.

2013 ◽  
Vol 275-277 ◽  
pp. 1964-1967 ◽  
Author(s):  
T. Zhang ◽  
Z.Y. Zhong ◽  
J. Zhou ◽  
F.L. Sun

TiO2-doped ZnO thin films with highly (002)-preferred orientation were grown on glass substrates by RF magnetron sputtering. The effect of substrate temperature on structure and optical properties of the films were investigated by X-ray diffractometer and spectrophotometer. The results show that the polycrystalline TiO2-doped ZnO films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate. The substrate temperature significantly affects the crystallite size and optical transmittance of the deposited films, but slightly influences the refractive index and optical bandgap of the deposited films. The TiO2-doped ZnO film grown at substrate temperature of 470 K possesses the maximum crystallite size, an average transmittance of 76.2 % in the visible light range, and an optical bandgap of 3.46 eV.


2010 ◽  
Vol 663-665 ◽  
pp. 1293-1297 ◽  
Author(s):  
Yue Bo Wu ◽  
Sheng Lei ◽  
Zhe Wang ◽  
Ru Hai Zhao ◽  
Lei Huang ◽  
...  

The Al-doped ZnO (AZO) films were deposited on the glass substrates by RF magnetron sputtering at different substrate temperatures. The effect of substrate temperature on the structural, optical, and electrical properties of AZO films was investigated. The results indicate each of the films has a preferential c-axis orientation. The grain size increases with substrate temperature increasing. All the films exhibit a high transmittance in visible region and have sharp ultraviolet absorption characteristics. The resistivity decreases with substrate temperature increasing up to 250oC, then increases for higher temperature.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3861 ◽  
Author(s):  
Yen-Lin Chu ◽  
Sheng-Joue Young ◽  
Liang-Wen Ji ◽  
I-Tseng Tang ◽  
Tung-Te Chu

In this paper, 100 nm-thick zinc oxide (ZnO) films were deposited as a seed layer on Corning glass substrates via a radio frequency (RF) magnetron sputtering technique, and vertical well-aligned Fe-doped ZnO (FZO) nanorod (NR) arrays were then grown on the seed layer-coated substrates via a low-temperature solution method. FZO NR arrays were annealed at 600 °C and characterized by using field emission scanning microscopy (FE-SEM) and X-ray diffraction spectrum (XRD) analysis. FZO NRs grew along the preferred (002) orientation with good crystal quality and hexagonal wurtzite structure. The main ultraviolet (UV) peak of 378 nm exhibited a red-shifted phenomenon with Fe-doping by photoluminescence (PL) emission. Furthermore, FZO photodetectors (PDs) based on metal–semiconductor–metal (MSM) structure were successfully manufactured through a photolithography procedure for UV detection. Results revealed that compared with pure ZnO NRs, FZO NRs exhibited a remarkable photosensitivity for UV PD applications and a fast rise/decay time. The sensitivities of prepared pure ZnO and FZO PDs were 43.1, and 471.1 for a 3 V applied bias and 380 nm UV illumination, respectively.


2016 ◽  
Vol 33 (4) ◽  
pp. 270-275 ◽  
Author(s):  
J. Yang ◽  
J. Huang ◽  
Y. X. Lu ◽  
H. H. Ji ◽  
L. Zhang ◽  
...  

2016 ◽  
Vol 53 ◽  
pp. 84-88 ◽  
Author(s):  
Jin Yang ◽  
Jian Huang ◽  
Huanhuan Ji ◽  
Ke Tang ◽  
Lei Zhang ◽  
...  

2012 ◽  
Vol 12 (3) ◽  
pp. 2503-2508 ◽  
Author(s):  
Georgi P. Daniel ◽  
David Devraj Kumar ◽  
V. B. Justinvictor ◽  
Prabitha B. Nair ◽  
K. Joy ◽  
...  

2007 ◽  
Vol 515 (24) ◽  
pp. 8785-8788 ◽  
Author(s):  
Jinzhong Wang ◽  
Vincent Sallet ◽  
François Jomard ◽  
Ana M. Botelho do Rego ◽  
Elangovan Elamurugu ◽  
...  

2004 ◽  
Vol 854 ◽  
Author(s):  
Sang Ryu ◽  
Youngman Kim

ABSTRACTZnO films were produced on the Si(100) and sapphire(0001) wafers by RF magnetron sputtering in terms of processing variables such as substrate temperature and RF power. The stress in films was obtained from the Stoney's formula using a laser scanning device. The stress levels in the films showed the range from ∼40MPa to ∼-1100MPa depending on processing variables.SEM was employed to characterize the microstructure of the films. As the substrate temperature increased, the film surface became rougher and the films showed coarser grains. The optical property of the films was studied by PL measurements. At the highest substrate temperature 800°C the film exhibited sharper UV peaks unlike other conditions.


2021 ◽  
Author(s):  
Bilel Khalfallah ◽  
I. Riahi ◽  
F. Chaabouni

Abstract RF sputtered undoped and Cu doped ZnO (CZO) thin films were deposited on unheated glass substrates using a mixed Cu2O and ZnO powders target at different Cu concentrations of 0, 1, 2, 3 and 4 wt.%. The effects of copper concentration on the structural, electrical, optical and photocatalytic properties of CZO films have been studied. From XRD and Raman spectroscopy studies, it was found that the deposited films were polycrystalline with a predominant hexagonal wurtzite structure along the c-axis perpendicular to the substrate surface. The presence of multiple interference fringes in the transmittance and reflectance spectra shows the good homogeneity of the films. All the films are highly transparent with transparency reaching 80% indicating the possibility to use these films as an optical window. The absorption tail gradually shifted towards a higher wavelength side, which resulted in the decrease of bandgap energy from 3.35 to 3.26 eV. All the sputtered films are highly conductive with a conductivity reaching 104 S.cm− 1.The effect of Cu-doping on the photocatalytic activity of ZnO thin films for the degradation of methylene blue (MB) dye was studied under sunlight irradiation and the results showed that the Cudoping provokes appreciable degradation of MB and reached a maximum for the 1 wt.% Cu doped ZnO film.


2013 ◽  
Vol 30 (4) ◽  
pp. 221-227 ◽  
Author(s):  
A. Sayari ◽  
L. El Mir ◽  
S. Al-Heniti ◽  
E. Shalaan ◽  
S. J. Yaghmour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document