Catalytic Activity of Dehydrogenation of Methanol to MF over Cu/SBA-15 and Cu-ZnO/SBA-15 Prepared by Grinding and Impregnation

2012 ◽  
Vol 608-609 ◽  
pp. 1476-1479
Author(s):  
Min Jian Huang ◽  
Gong Li ◽  
Guo Ru Li

Using SBA-15 molecular sieve as the support, Cu/SBA-15 and Cu-ZnO/SBA-15 catalysts were prepared by grinding and impregnation. They were characterized by XRD, TEM, TPR and nitrogen adsorption/desorption methods. Their catalytic activities of the dehydrogenation of methanol to methyl formate (MF) were studied and compared.The results indicated that the Cu and ZnO in the catalysts prepared by grinding had a worse dispersity than that prepared by impregnation. However, the reduction temperature of the CuO in the catalysts prepared by grinding was obviously lower than that prepared by impregnation and the selectivity to MF can be improved with the adding of ZnO. The experiments showed that the methanol conversion rate and selectivity to MF were 15.23% and 79.81% at 270°C for Cu-ZnO/SBA-15-G prepared by grinding, respectively. For Cu-ZnO/SBA-15-I prepared by impregnation, the methanol conversion rate and selectivity to MF were 13.41 % and 81.31% respectively.

2011 ◽  
Vol 396-398 ◽  
pp. 730-733
Author(s):  
Guo Ru Li ◽  
Gong Li ◽  
Shu Xi Zhou ◽  
Hui Juan Tong

Abstract. Using MCM-41 molecular sieves as the support, Cu-ZnO/MCM-41 and Cu/MCM-41 catalysts were prepared by impregnation and grinding. The catalysts were characterized by XRD, N2 adsorption-desorption and TPR methods. The catalytic activity of the dehydrogenation of methanol to methyl formate (MF) was evaluated using the flow microreactor under atmospheric pressure. According to the results, the catalyst prepared by impregnation had a better selectivity for the MF, but a lower methanol conversion rate. However, the product's selectivity could be improved by adding ZnO additive while the methanol conversion rate was reduced. For Cu/MCM-41 prepared by impregnation and grinding, the methanol conversion rate was 20.18% and 24.13% respectively at 250°C and the MF selectivity was 73.75% and 67.35% respectively. Likewise for Cu-ZnO/MCM-41 prepared by impregnation and grinding, the methanol conversion rate was 15.28% and 18.83% respectively at 250°C and the MF selectivity was 81.31% and 75.32% respectively.


2013 ◽  
Vol 779-780 ◽  
pp. 201-204
Author(s):  
Miao Li ◽  
Hong Wang ◽  
Xian Qing Li ◽  
Jin Rong Liu

Ordered hexagonally mesoporous molecular sieve Al-MCM-41 with Si/Al (atom) ratio=9 was prepared by hydrothermal synthesis using raw kaolin. X-ray diffraction (XRD), Nitrogen adsorption desorption, Transmission Electron Microscope (TEM) and Energy Dispersive X-ray Detector (EDX) were employed to characterise raw kaolin, calcined kaolin, as-synthesized and calcined Al-MCM-41. The results indicated that characteristic reflections of raw kaolin disappeared after calcination, both of as-synthesized and calcined Al-MCM-41 exhibited well ordered hexagonally mesoporous molecular sieve structure.


2011 ◽  
Vol 324 ◽  
pp. 157-161 ◽  
Author(s):  
Mary Mrad ◽  
Cédric Gennequin ◽  
Antoine Aboukaïs ◽  
Edmond Abi-Aad

The performances of different xCu10Ce and xZn10Ce (x = 1, 3, and 5) catalysts prepared by impregnation method then pelletised, were investigated in the steam reforming of methanol (SRM) under a GHSV = 15500 h-1 with H2O/CH3OH = 2. The impregnation of copper over ceria supports shows better results than that of zinc. The catalytic activity in the Cu-based depends on the dispersion of the copper species. The methanol conversion rate is related to the formation of an optimum content of reduced copper species.


2021 ◽  
Vol 11 (1) ◽  
pp. xx-xx
Author(s):  
Nga Phan To ◽  
Lien Nguyen Hong ◽  
Tuyen Le Van ◽  
Nhan Phan Chi ◽  
Huyen Phan Thanh

Porous LaFeO3 were synthesised by nanocasting method using mesoporous silica (SBA-15) as a hard template and used as a visible-light-driven photocatalyst. The as-synthesised LaFeO3 photocatalyst were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD), N2 adsorption-desorption, and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-vis DRS). The photo-Fenton catalytic activities of porous LaFeO3 were investigated for the degradation of oily-containing wastewater. The results showed that porous LaFeO3 had better photo-Fenton catalytic activity under visilbe light irradiation than pure LaFeO3. The remarkable improvement photo-Fenton catalytic activity of porous LaFeO3 material could be attributed to the synergistic effect of adsorption and visible light photo-Fenton processes thanks to its porous structure.


2021 ◽  
Vol 21 (12) ◽  
pp. 6082-6087
Author(s):  
Chih-Wei Tang ◽  
Hsiang-Yu Shih ◽  
Ruei-Ci Wu ◽  
Chih-Chia Wang ◽  
Chen-Bin Wang

The increase of harmful carbon monoxide (CO) caused by incomplete combustion can affect human health even lead to suffocation. Therefore reducing the CO discharged by vehicles or factories is urgent to improve the air quality. The spinel cobalt (II, III) oxide (Co3O4) is an active catalyst for CO abatement. In this study, we tried to fabricate dispersing Co3O4 via the dispersion-precipitation method with acetic acid, formic acid, and oxalic acid as the chelating dispersants. Then, the asprepared samples were calcined at 300 ºC for 4 h to obtain active catalysts, and assigned as Co(A), Co(F) and Co(O) respectively, the amount of the dispersants used are labeled as I (0.12 mole), II (0.03 mole) and III (0.01 mole). For comparison, another CoAP sample was prepared via alkaliinduced precipitation and calcined at 300 ºC. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), scanning electron microscope (SEM), and nitrogen adsorption/desorption system, and the catalytic activity focused on the CO oxidation. The influence of chelating dispersant on the performance of abatement of CO was pursued in this study. Apparently, the results showed that the chelating dispersant can influence the catalytic activity of CO abatement. An optimized ratio of dispersant can improve the performance, while excess dispersant lessens the surface area and catalytic performance. The series of Co(O) samples can easily donate the active oxygen since the labile Co–O bonding and indicated the preferential performance than both Co(A) and Co(F) samples. The nanorod Co(O)-II showed preferential for CO oxidation, T50 and T90 approached 96 and 127 ºC, respectively. Also, the favorable durability of Co(O)-II sample maintains 95% conversion still for 50 h at 130 ºC and does not emerge deactivation.


2015 ◽  
Vol 723 ◽  
pp. 481-484
Author(s):  
Xiao Dong Li

SBA-15 molecular sieve owned the characteristic of uniform nanoscale channels, large pores, thick walls and high hydrothermal stability. It has the potential foreground as adsorption, separation, catalysis and new type host-guest nanocomposite materials. In this paper, SBA-15 molecular sieve was synthesized in acidic medium by hydrothermal method using triblock copolymers (EG20PG40EG20) as template, tetraethoxysilane as silica resource. Semiconductor material AgI was incorporated into the mesoporous channels of the SBA-15 molecular sieve by solid phase thermal diffusion method and the (SBA-15)-AgI nanocomposites materials were prepared. The products were characterized by means of powder X-ray diffraction, low-temperature nitrogen adsorption-desorption technique at 77 K and luminous properties were studied. The results showed that AgI went into the channels of the SBA-15, the materials (SBA-15)-AgI remained the highly ordered two-dimensional hexagonal. However, the crystalline was decreased to some degree, the pore volume, pore size and the surface area decreased to some extent compared to those of the SBA-15 molecular sieve. It was found by luminous studies that the energy band gap of the (SBA-15) -AgI composite material is very high and radiation process is very strong. The composite materials possess very good luminous performance and can be hopefully acted as luminous materials.


2010 ◽  
Vol 660-661 ◽  
pp. 561-566
Author(s):  
L.A. Lima ◽  
B.V. Sousa ◽  
Meiry Glaúcia Freire Rodrigues

Catalysts supported on SBA-15 were obtained by wet impregnation using aqueous solution of cobalt nitrate, where different contents of cobalt (5 wt% and 10 wt%) were prepared. The molecular sieve SBA-15 was synthesized using tetra ethyl ortho silicate (TEOS) as silicate source, and triblock copolymer, poly-(ethylene oxide)-poly (propylene oxide)-poly-(ethylene oxide) PEO-PPO-PEO as the organic structure directing agent. These materials were characterized by X-ray diffraction (XRD), X-ray energy dispersion spectrophotometer (EDX) and Nitrogen adsorption–desorption isotherms (BET). The results from the XRD showed that the molecular sieve mesoporous (SBA-15) was identified by X-ray diffraction, especially from the (210) and (300) peaks, which represent a typical spectrum for the SBA-15. Characterization of catalysts by Nitrogen adsorption–desorption isotherms (BET) made it possible to verify the the samples had been of type IV with hysteresis of corresponding the H2 type the porous materials.


2021 ◽  
Vol 16 (1) ◽  
pp. 88-96
Author(s):  
Mukhamad Nurhadi ◽  
Ratna Kusumawardani ◽  
Teguh Wirawan ◽  
Sumari Sumari ◽  
Sin Yuan Lai ◽  
...  

The catalytic performance of titania-supported carbon mesoporous-derived from fish bones (TiO2/CFB) has been investigated in styrene oxidation with aqueous H2O2. The preparation steps of (TiO2/CFB) catalyst involved the carbonization of fish bones powder at 500 °C for 2 h. followed by impregnation of titania using titanium(IV) isopropoxide (500 µmol) precursor, and calcined at 350 °C for 3 h. The physical properties of the adsorbents were characterized using Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with energy dispersive X-ray (SEM-EDX), and nitrogen adsorption-desorption studies. The catalytic test was carried out using styrene oxidation with H2O2 as an oxidant at room temperature for 24 h. Its catalytic activity was compared with Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts. It is demonstrated that the catalytic activity of TiO2/CFB catalyst has the highest compared to Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts in the oxidation of styrene with styrene conversion ~23% and benzaldehyde selectivity ~90%. Kinetics of TiO2/CFB catalyzed oxidation of styrene has been investigated and mechanism for oxidation of styrene has been proposed. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0). 


2014 ◽  
Vol 62 (3) ◽  
pp. 481-488 ◽  
Author(s):  
T. Chellappa ◽  
M. Jose Fonseca Costa ◽  
W.A. Nascimento ◽  
L. Ferreira De Lima ◽  
I. Almeida Bassan ◽  
...  

Abstract A microporous SAPO-11 Molecular sieve was successfully synthesized by the hydrothermal method, using a single agent, as an organic template: di-isopropylamine (DIPA). The obtained solid was calcined at 550◦C for three hours, after which the flow of nitrogen was exchanged for that of synthetic air and submitted for another ten hours of calcination, so as to remove the single agent: di-isopropylamine, which after the removal of the template could be observed by the high crystallization of the sample. Furthermore, the molecular sieve was characterized by XRD, SEM, TG-DTG and N2 adsorption desorption (BET analysis). The obtained catalyst proved to have a high potential catalytic activity and selectivity, through the obtained characterization results, exhibiting good hydrothermal stability. The catalytic performance of SAPO-11 was tested by the deactivation/regenerability of the coked sample, furthered by cracking of n-hexane reaction and high olefins selectivity was obtained.


2021 ◽  
Author(s):  
Noorullah Hussain-Khil ◽  
Arash Ghorbani-Choghamarani ◽  
Masoud Mohammadi

Abstract A highly efficient and stable heterogeneous coordination polymer (CP) was successfully prepared by hydrothermal combination of silver and 4,6-diamino-2-pyrimidinethiol. The prepared coordination polymer was characterized by FT-IR, XRD, TGA, SEM, EDX, X-ray mapping and Nitrogen adsorption-desorption analysis. The prepared Ag-CP exhibit excellent catalytic activity in multicomponent Hantzsch synthesis of polyhydroquinolines under mild reaction conditions in relatively short reaction times. The heterogeneity of the catalyst was confirmed by the hot filtration test; also, the catalyst was reused for at least four times under the optimized reaction conditions without any significant loss of its catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document