scholarly journals Silver Coordination-Polymer based of 4,6-Diamino-2-pyrimidinethiol as Organic Ligand: a Highly Reusable Heterogeneous Nanocatalyst for the Asymmetric Hantzsch Synthesis of Polyhydroquinolines under Green Conditions

Author(s):  
Noorullah Hussain-Khil ◽  
Arash Ghorbani-Choghamarani ◽  
Masoud Mohammadi

Abstract A highly efficient and stable heterogeneous coordination polymer (CP) was successfully prepared by hydrothermal combination of silver and 4,6-diamino-2-pyrimidinethiol. The prepared coordination polymer was characterized by FT-IR, XRD, TGA, SEM, EDX, X-ray mapping and Nitrogen adsorption-desorption analysis. The prepared Ag-CP exhibit excellent catalytic activity in multicomponent Hantzsch synthesis of polyhydroquinolines under mild reaction conditions in relatively short reaction times. The heterogeneity of the catalyst was confirmed by the hot filtration test; also, the catalyst was reused for at least four times under the optimized reaction conditions without any significant loss of its catalytic activity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noorullah Hussain-Khil ◽  
Arash Ghorbani-Choghamarani ◽  
Masoud Mohammadi

AbstractA highly efficient and stable heterogeneous coordination polymer (CP) was successfully prepared by hydrothermal combination of silver and 4,6-diamino-2-pyrimidinethiol. The prepared coordination polymer was characterized by FT-IR, XRD, TGA, SEM, EDX, X-ray mapping and Nitrogen adsorption–desorption analysis. The prepared Ag–CP exhibit excellent catalytic activity in multicomponent Hantzsch synthesis of polyhydroquinolines under mild reaction conditions in relatively short reaction times. The heterogeneity of the catalyst was confirmed by the hot filtration test; also, the catalyst was reused for at least four times under the optimized reaction conditions without any significant loss of its catalytic activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Qiuyun Zhang ◽  
Xiaofang Liu ◽  
Tingting Yang ◽  
Quanlin Pu ◽  
Caiyan Yue ◽  
...  

Direct conversion of fructose into 5-hydroxymethylfurfural (HMF) is achieved by using modified aluminum-molybdenum mixed oxide (S-AlMo) as solid acid catalysts. The synthesized catalyst was characterized by powder XRD, nitrogen adsorption-desorption isotherm, NH3-TPD, and SEM. As a result, the presence of strong acidity, mesostructures, and high surface area in the S-AlMo catalyst was confirmed by nitrogen adsorption-desorption isotherm and NH3-TPD studies. A study by optimizing the reaction conditions such as catalyst dosage, reaction temperature, and time has been performed. Under the optimal reaction conditions, HMF was obtained in a high yield of 49.8% by the dehydration of fructose. Moreover, the generality of the catalyst is also demonstrated by glucose and sucrose with moderate yields to HMF (24.9% from glucose; 27.6% from sucrose) again under mild conditions. After the reaction, the S-AlMo catalyst can be easily recovered and reused four times without significant loss of its catalytic activity.


Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


2020 ◽  
Vol 10 (8) ◽  
pp. 2692
Author(s):  
Anirban Karmakar ◽  
Luísa M.D.R.S. Martins ◽  
Yuliya Yahorava ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The synthesis and characterization of a set of iron(III) complexes, viz. the mononuclear [Fe(L)3] (1) and [NHEt3][Fe(L)2(Cl)2] (2), the dinuclear methoxido-bridged [Fe(L)2(μ-OMe)]2.DMF.1.5MeOH (3), and the heteronuclear Fe(III)/Na(I) two-dimensional coordination polymer [Fe(N3)(μ-L)2(μ-O)1/2(Na)(μ-H2O)1/2]n (4), are reported. Reactions of 3-amino-2-pyrazinecarboxylic acid (HL) with iron(III) chloride under different reaction conditions were studied, and the obtained compounds were characterized by elemental analysis, Fourier Transform Infrared (FT-IR) spectroscopy, and X-ray single-crystal diffraction. Compound 1 is a neutral mononuclear complex, whereas 2 is mono-anionic with its charge being neutralized by triethylammonium cation. Compounds 3 and 4 display a di-methoxido-bridged dinuclear complex and a two-dimensional heterometallic Fe(III)/Na(I) polynuclear coordination polymer, respectively. Compounds 3 and 4 are the first examples of methoxido- and oxido-bridged iron(III) complexes, respectively, with 3-amino-2-pyrazinecarboxylate ligands. The electrochemical study of these compounds reveals a facile single-electron reversible Fe(III)-to-Fe(II) reduction at a positive potential of 0.08V vs. saturated calomel electrode (SCE), which is in line with their ability to act as efficient oxidants and heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation (with tert-butyl hydroperoxide) of cyclohexanol to cyclohexanone (almost quantitative yields after 1 h). Moreover, the catalysts are easily recovered and reused for five consecutive cycles, maintaining a high activity and selectivity.


2020 ◽  
Vol 12 (5) ◽  
pp. 603-611
Author(s):  
Kumar Karitkey Yadav ◽  
Hemant Kumar ◽  
Balaram Pani ◽  
Indrajit Roy ◽  
Pramod Kumar

In this manuscript, we have synthesized Iron sulfide nanoclusters (FeSNCs) by precipitation reaction between ferric chloride (FeCl3 · 6H2O) and thiourea with sodium borohydride (NaBH4) as a reducing agent at room temperature in water. These nanoclusters are synthesized within two minutes. The morphology and size of these synthesized FeSNCs were confirmed from transmission electron microscopy (TEM) and scanning electron microscopy (SEM). TEM and SEM data showed that the average diameters of these FeSNCs are around 70 nm. The Power X-ray diffraction (XRD) patten of the FeSNCs clearly showed the crystalline nature of these nanoclusters. Vibrating sample magnetometer (VSM) experiment showed that these nanoclusters are ferromagnetic in nature having high magnetization (20 emu/g). The nitrogen adsorption isotherm of FeSNCs confirmed the porous nature. These well characterized FeSNCs were further utilized as a catalyst for the synthesis of 9-aryl-1,8-dioxooctahydroxanthenes and 14-substituted-14H-dibenzo[a, j] xanthene derivatives. It is observed that the catalytic activities of FeSNCs are much better than the other reported heterogeneous and homogeneous catalysts. After completion of the reaction, FeSNCs are separated from the reaction mixture with the help bar magnet, washed and reused for the next catalytic reaction. Current method offers several advantages over other reported methods such as excellent yields, short reaction times, simple reaction procedure, and reusability of the catalyst upto five times without any significant loss in its activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Hamid Beyzaei ◽  
Reza Aryan ◽  
Zahra Keshtegar

Synthesis of new imidazolidine and tetrahydropyrimidine derivatives 3a, b and 4a–c as cyclic 1,3-diamines under two reaction conditions (A and B) is described. Under reaction conditions-A, a suspension of (E)-2-cyano-2-(oxazolidin-2-ylidene)ethanethioamide 1 (1 eq.) and diaminoalkanes 2a–e (2 eq.) in absolute ethanol is heated under reflux for 16–22 h to afford 3a, b and 4a–c. Alternatively, under reaction conditions-B, a solution of thioamide 1 (1 eq.) in diaminoalkanes 2a–e (3 eq.) is stirred under solvent-free conditions at room temperature for 3 days to give desired products. Reaction conditions-A for having higher yields, shorter reaction times, and required less diamines is more effective than reaction conditions-B. Oxazolidine ring opening is observed by reacting compound 1 with all of the diamines 2a–e, but the thioamide group only reacts with nonbulky diamines 2a, b. The chemical structures of novel compounds were confirmed by 1H NMR, 13C NMR, elemental analysis, and FT-IR spectrometry.


2009 ◽  
Vol 6 (s1) ◽  
pp. S390-S396 ◽  
Author(s):  
Abdolkarim Zare ◽  
Alireza Hasaninejad ◽  
Esmael Rostami ◽  
Ahmad Reza Moosavi-Zare ◽  
Maria Merajoddin ◽  
...  

A highly efficient, green and expeditious solvent-free method is described for the chemoselective conversion of aldehydes to the corresponding acylals in excellent yields, using acetic anhydride in the presence of catalytic amount (20 mol%) of silica-supported LiHSO4. Ketones does not react under these reaction conditions. LiHSO4/SiO2can be recovered and reused without any significant loss of its catalytic activity.


2012 ◽  
Vol 161 ◽  
pp. 185-189 ◽  
Author(s):  
Yuan Sheng Ding ◽  
Fei Lu ◽  
Xin Bao Han

The organic–inorganic hybrid catalyst [(CH2)5NH2]4SiW12O40 was prepared by matrix acid and piperidine. The matrix acid was synthesized by sodium molybdate and sodium silicate, and the piperidine was organic ligand. The proposed composition and structure of the catalyst were evidenced by XPS, FT-IR, XRD, TG-DTA and elemental analysis. The results indicated that the heteropoly anions still reserved their Keggin structure in the compound. Its catalytic performance was evaluated in the oxidation of benzaldehyde to benzoic acid. Various reaction parameters were changed to attain the optimal conditions. The optimal reaction conditions were found to be: n(catalyst): n(benzaldehyde)=3.1×10-3:1; n(H2O2): n(benzaldehyde)=4.5:1; reaction temperature was 80°C; reaction time was 4h. The yield of benzoic acid achieved above 85%.


2018 ◽  
Vol 1 (T5) ◽  
pp. 116-125
Author(s):  
Hai Truong Nguyen ◽  
Phuong Hoang Tran

Metal-organic framework MIL-53(Al) was synthesized by a solvothermal method using aluminium nitrate as the aluminium source and 1,4- benzenedicarboxylic acid (H2BDC) as the organic ligand. The structure of MIL-53(Al) was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The catalytic activity and recyclability of MIL-53(Al) catalyst were evaluated based on the Paal-Knorr reaction between aniline and acetonylacetone. The reaction conditions were optimized and the results showed that the MIL-53(Al) catalyst exhibited good catalytic activity and recyclability based on the PaalKnorr reaction. With the molar ratio of MIL-53(Al) catalyst of 10 mol %, the molar ratio of aniline and acetonylacetone of 1:1.2, and without solvents, the conversion of aniline could reach 100 % and the selectivity of 2,5-dimethyl-1-phenyl-1H-pyrrole has high yield (95-100 %) after 2 hours by ultrasound activation. The MIL-53(Al) catalyst can be reused five times without significant degradation in the catalytic activity.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1307
Author(s):  
Guanhao Liu ◽  
Jingyi Yang ◽  
Xinru Xu

β-cyclodextrin derivative intercalated MgAl-hydrotalcites (β-CD-Ca/LDH) was synthesized to convert glycerol into high value-added glycerol carbonate(GC) by transesterification of dimethyl carbonate (DMC) and glycerol in this paper. β-cyclodextrin-metal complexes and β-CD-Ca/LDH was characterized by XRD, FT-IR, SEM, XPS and nitrogen adsorption-desorption. The enrichment of organic reactants in the hydrophobic cavity of β-cyclodextrin improved the collision probability of reactants. The intercalation of β-cyclodextrin-calcium complex (β-CD-Ca) increased the pore size and basic strength of catalyst. The experiment results showed that the glycerol conversion was 93.7% and the GC yield was 91.8% catalyzed by β-CD-Ca/LDH when the molar ratio of DMC and glycerol was 3:1, the catalyst dosage was 4 wt.%, the reaction temperature was 75 °C and the reaction time was 100 min while the glycerol conversion was 49.4% and the GC yield was 48.6% catalyzed by MgAl-LDH under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document