The Effect of Support on the Catalytic Performance for Bio-Oil Upgrading

2012 ◽  
Vol 608-609 ◽  
pp. 350-355 ◽  
Author(s):  
Zhong Yi Ma ◽  
Lin Wei ◽  
Wang Da Qu ◽  
James Juson ◽  
Qing Wei Zhu ◽  
...  

Catalysts play critical roles in hydrotreating and hydrocracking processes of upgrading biomass-derived bio-oil to drop-in fuels. The selectivity and deactivate of catalysts, however, still remain biggest challenge. By using ZSM-5, alumina, and activated carbon as supports, different catalysts made up with Ru were prepared and tested in a bio-oil upgrading process. The effect of supports were investigated and compared in term of surface properties. The results showed that the ZSM-5 based catalysts got more water phase because of its highest surface acidity. The alumina changed to aluminum hydroxide in the presence of water at the reaction conditions. Activated carbon based catalysts showed good catalytic performance with more hydrocarbons and less water phase content in the upgraded bio-oil. All of upgraded bio-oils were verified by chemical analysis using a GC-MS. Nevertheless, further study for the kinetics of catalytically upgrading bio-oil is recommended.

2011 ◽  
Vol 396-398 ◽  
pp. 1851-1855
Author(s):  
Tian Si ◽  
Lin Hua Zhu

A series of new type acid catalyst samples based on mesoporous CaZr4(PO4)6(CZP) belonging to NZP family synthesized by sol-gel method was obtained by Al, La, B incorporation in CZP or by heteropoly acid H3PW12O7•xH2O(HPW) loading on CZP, and their acid catalytic activity and selectivity were investigated by using α-pinene isomerization as a probe reaction. The phase, pore structure and surface acidity of the catalyst samples were characterized by X-ray diffraction (XRD), N2 sorption and NH3 temperature programmed desorption (NH3-TPD) respectively. The results showed that the surface acidity of CZP modified by elements incorporation and HPW loading was improved in a different extent. The conversion of α-pinene at 150 °C reached to 41 % over the catalyst sample noted as Al-CZP-0.15 in which the mole ratio of Al to Zr was 0.15. Under the same reaction conditions, the conversion of α-pinene was above 95 % over the CZP supported with 20-30wt. %HPW.


2019 ◽  
Vol 48 (6) ◽  
pp. 508-514 ◽  
Author(s):  
Mei Yang ◽  
Tingyu Huang ◽  
Ning Tang ◽  
Ben Ou ◽  
Wenhao Zhang

Purpose This paper aims to investigate the photocatalytic activity of zinc doped MAO-TiO2 films under the optimum MAO treatment condition. Design/methodology/approach The coating was prepared by micro arc oxidation, and the influence of doping on the properties of the coating was also investigated. Findings The results show that the BET surface area is 78.25±0.03m2/g, total pore area is 76.32 ± 0.04m2/g, and the total pore volume is 0.2135 ± 0.0004cm3/g. The degradation ratio of the film electrode with Zn-doped in methyl orange solution is up to 94%. When the react circles is 10 times, the degradation ratio is up to more than 85% and remains steady. With the different reaction conditions, these kinetics of the reactions show some different formulas. Originality/value A kinetic equation for photocatalytic activity is established.


2012 ◽  
Vol 27 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Dong XU ◽  
Jun ZHANG ◽  
Gang LI ◽  
Penny XIAO ◽  
Paul WEBLEY ◽  
...  

2003 ◽  
Author(s):  
David J. McGarvey ◽  
H. D. Durst ◽  
William R. Creasy ◽  
Jill L. Ruth ◽  
Kevin M. Morrissey

1981 ◽  
Vol 46 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Milan Strašák ◽  
Jaroslav Majer

The kinetics of oxidation of alkenes by thallic sulphate in aqueous solutions, involving the two reaction steps-the hydroxythallation and the dethallation - was studied, and the effect of salts on the kinetics was examined; this made it possible to specify more precisely the reaction mechanism and to suggest a qualitative model of the reaction coordinate. It was found that in homogeneous as well as in heterogeneous reaction conditions, the reaction can be accelerated appreciably by adding tetraalkylammonium salts. These salts not only operate as catalysts of the phase transfer, but also exert a significant kinetic effect, which can be explained with a simplification in terms of a stabilization of the transition state of the reaction.


1980 ◽  
Vol 45 (3) ◽  
pp. 697-702 ◽  
Author(s):  
Vlastimil Vyskočil ◽  
Miroslav Zdražil

Kinetics of isomerisation of cyclohexene to methylcyclopentene proceeding as parallel reaction to hydrogenation of cyclohexene to cyclohexane on cobalt-molybdenum catalysts of different composition has been measured. The surface acidity of these catalysts was estimated from the difference in the adsorption of toluene and heptane which was measured by chromatographic method. In a series of catalysts containing molybdenum the acidity parallels isomerisation activity. Cobalt on alumina catalysts and alumina itself have greater acidity but exhibit lower isomerisation activity compared to the catalysts containing molybdenum.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


Sign in / Sign up

Export Citation Format

Share Document