Research on Signal Simulator at Crankshaft of Motorcycle Gasoline Engine

2012 ◽  
Vol 614-615 ◽  
pp. 414-421
Author(s):  
Chang Sheng Wang ◽  
Tie Zao Yang ◽  
Haijun Zhang ◽  
Hong Jie Zhao

Cam signals, crankshaft signals and angle signals were simulated by analogue crankshaft position sensors developed by C8051F series micro processors to emulate the operational environment of motorcycle engine. In the software development platform of gasoline engine, software running status of control system was tested. MP424 high-speed sampling card was applied to actually observe properties of ignition advance angle and fuel injection advance angle. The experiment suggested that practically observed fuel injection pulse width, ignition pulse width, properties of ignition advance angle and fuel injection advance angle were the same as those of models of control system software. This proved that the analogue crankshaft position sensor that has been developed is practical and feasible.

1991 ◽  
Author(s):  
Michael M. Schechter ◽  
Eugene H. Jary ◽  
Michael B. Levin

2008 ◽  
Vol 132 (1) ◽  
pp. 25-31
Author(s):  
Mieczysław DZIUBIŃSKI ◽  
Stanisław WALUSIAK ◽  
Wiktor PIETRZYK

The purpose of the study is to carry out the experimental tests for the propulsion unit of the selected passenger car i.e. Skoda Felicia 1.3 MPI provided with Simos 2P system (manufactured by Siemens). The tests were carried out by means of an appropriate measuring equipment, among others AOC1K oscilloscope (digital recorder integrated with PC by means of RS232 interface) and a personal computer. The measurements of signals on the contacts of the electronic control device encompass the measuring procedures for individual signals, in accordance with the contact symbols: the camshaft position sensor, the engine speed sensor, the lambda probe, the pressure sensor, the throttle position sensor, the idle speed control actuator, the knock sensor. In some cases it is impossible to confirm the standard codes by the execution of diagnostic tests of the modern control system of ZI combustion engine, using the Simos 2P system.


2015 ◽  
Vol 741 ◽  
pp. 546-549
Author(s):  
Ying Jie Sun ◽  
Yang Li ◽  
Chun Yu Wang ◽  
Yao Chun Li ◽  
Yun Feng Liang

This paper designs the control strategy of working mode conversion from stoichiometric homogeneous mixture to lean homogeneous mixture. First of all, after the types and parameters of electric hardware were selected in this system, a complete circuit layout of engine control system was designed, which used microcontroller named MC9S12XDP512 as control chip and the test bench was built. Then, we adjust the fuel injection pulse width and throttle opening to realize lean burn (lambda = 1.4) of torque being 40N.m at speed of 2500 r / min, and adjust injection timing to find the best injection timing which is 350 crank angle degree, and adjust the ignition advance angle to find the best ignition advance angle which is 13 crank angle degree. Finally, the work mode conversion was completed by the optimal parameters linear interpolation, reducing the fuel injection pulse width and increasing the throttle opening at the same time.


2013 ◽  
Vol 448-453 ◽  
pp. 3421-3425
Author(s):  
Tie Zao Yang ◽  
Hai Bo Xue ◽  
Chang Sheng Wang ◽  
Xin Yang Wang ◽  
Lei Yuan

Due to the fact that it is generally difficult to accurately calculate the nonlinear section of flow characteristics curve of small injection pulse width of electronic control injector, it is impossible for electronic control unit (ECU) to accurately control fuel injection quantity when the small engine such as motorcycle is under a working condition of idle speed or small load. This paper introduces the principle and method to make a fitting for flow characteristics of nonlinear section in the developed software system in details. Take the electronic control injector of motorcycle as an example, the programming method combined with LabVIEW and MATLAB is utilized to make a fitting treatment for accurate fuel injection quantity obtained via measuring single-chip microcomputer through Smoothing Spline method, so as to obtain the flow characteristics of small injection pulse width and normal injection pulse width of electronic control injector of motorcycle.


Author(s):  
Byungho Lee ◽  
Yann Guezennec ◽  
Giorgio Rizzoni ◽  
Doug Trombley

Due to the increasing demands on improved fuel economy and stringent government regulations on tailpipe emissions, many automotive industries and research institutes have been looking for alternative solutions, such as diesel engines, hybrid-electric vehicles, and fuel cell technologies, over conventional port fuel injection (PFI) gasoline engines to meet the demands. On the other hand, many people in the automotive community also realize that there are still a lot of room for improvements in gasoline engine technologies, such as utilizing direct injection and/or variable valve actuation. In order to fully realize the potential benefits of such advanced technologies in gasoline engines, a well-coordinated complex control system design is essential. This paper describes the development and validation of a control-oriented mean-value model for a spark-ignition direct-injection (SIDI) engine to assist and accelerate such coordinated control system design and calibration processes via use of an engine model. The performance and accuracy of the dynamic engine model are evaluated and validated against a set of data for an engine running on a transient driving cycle.


2013 ◽  
Vol 860-863 ◽  
pp. 2738-2741
Author(s):  
Lian Zhi Yu

Pneumatic artificial actuator had been designed and was used as power driven. A 3-DOF Pneumatic artificial actuator was described as a micro-robot flexible actuator, the mechanical model and dynamic characteristics were studied for high accurate control. The control system was designed and the actuator characteristics were tested in experiments. Results prove the pneumatic artificial actuator has good performances and can be controlled in high speed and high accuracy by computer system with PWM (Pulse Width Modulation: PWM).


2019 ◽  
Vol 9 (13) ◽  
pp. 2678 ◽  
Author(s):  
Atsushi Nishiyama ◽  
Minh Khoi Le ◽  
Takashi Furui ◽  
Yuji Ikeda

Among multiple factors that affect the quality of combustion, the intricate and complex interaction between in-cylinder flow/turbulent field and flame propagation is one of the most important. In this study, true simultaneous, crank-angle resolved imaging of the flame front propagation and the measurement of flow-field was achieved by the application of high-speed Particle Image Velocimetry (PIV). The technique was successfully implemented to avoid problems commonly associated with PIV in a combustion environment, such as interferences and reflections, avoided thanks to a number of adjustments and arrangements. All experiments were carried out inside a single-cylinder optical gasoline engine operated at 1200 rpm, using port fuel injection (PFI) with stoichiometric mixtures. It was found that the global vortex location of the tumble motion heavily influences the flame growth direction as well as the flame shape, mainly due to the tumble-induced flow across the ignition source. The flame propagation also influences the flow-field such that the pre-ignition flow can be maintained and the flow of unburned region surrounding the flame front will be enhanced.


2013 ◽  
Vol 823 ◽  
pp. 528-531 ◽  
Author(s):  
Zi Sheng Zhang ◽  
Peng Bo Ge ◽  
Xiao Dong Shi ◽  
Bo Feng Liu ◽  
Zhi Qiang Liu

It is urgent to study a new control system for improving the efficiency of electrostatic precipitator. The System-on-a-Programmable-Chip (SOPC) development board, which belongs to the series of Cyclone of Altera Company, is used as the development platform. Analog Digital (AD) conversion module, voltage control module and overall control module of the electrostatic precipitator are designed and the simulation waveform of the system is analyzed, based on the programmable logic device EP1C12Q240C6 and Very-High-Speed Integrated Circuit Hardware Description Language (VHDL) programming language. The results show that: by using Field Programmable Gate Array (FPGA) as the control, transformation of AD is accurate and fast and high voltage power supply is stable, which leads to a certain value for generalization.


2014 ◽  
Vol 496-500 ◽  
pp. 1248-1251 ◽  
Author(s):  
Jia Jun Wang ◽  
Jun Wei Tao ◽  
Hong Da Zhang ◽  
Jin Bo Guo

Quasi-homogeneous lean mixture combustion technology can take full advantages of lean-combustion, and help reduce the engine fuel consumption and emissions. Quasi-Homogeneous Lean-burn engine Control System, combined virtual instruments with engine electronic control technology, can precisely control air-fuel ratio injection, timing, fuel injection pulse and ignite on timing, which provides a reliable and convenient platform for the engine lean-burning performance tests..


Sign in / Sign up

Export Citation Format

Share Document