Preparation of Flame Retardant Polyamide 6 Fibers with Melamine Cyanurate and Bicyclic Phosphates via Melt Spinning

2012 ◽  
Vol 621 ◽  
pp. 44-47 ◽  
Author(s):  
Yun Zhi Lin ◽  
Kai Sha ◽  
Hai Yan Xu ◽  
Yin Tang ◽  
Ru Xiao

Melamine cyanurate (MCA) and bicyclic phosphates (BP) were combined and added into polyamide6 (PA6) with the polyethylene oxide (PEO) as dispersing agent by melt blend, then the flame retardant PA6 fibers were prepared by melt spinning. Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) were utilized to characterize the morphology and properties of the blends. The results indicated that the MCA particles with diametric size about 400nm are highly uniformly in the PA6 matrix, the spinnability and tensile strength of flame retardant PA6 fibers declined due to co-addition of MCA and M102B, TGA showed the flame retardant PA6 fibers decomposed early and retained high solid residue. From Flammability testing, an increase of oxygen index to 33.2% and an improvement of the UL-94 classification to V-0 were observed.

2016 ◽  
Vol 87 (5) ◽  
pp. 561-569 ◽  
Author(s):  
Yuanyuan Li ◽  
Yunzhi Lin ◽  
Kai Sha ◽  
Ru Xiao

To improve the flame retardancy of polyamide 6 (PA6) fibers, melamine cyanurate (MCA)/PA6 composites were synthesized via in situ polymerization of ɛ-caprolactam in the presence of adipic acid-melamine salt and cyanuric acid-hexane diamine salt. The flame retardant MCA/PA6 composite fibers were prepared by melt spinning. The structure and properties of MCA/PA6 composites and MCA/PA6 composite fibers were studied by Fourier transform infrared spectra, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, tensile tests, vertical burning tests (UL94) and limiting oxygen index (LOI) tests. Experimental results indicated that the MCA/PA6 composites loaded with 8 wt% of additives can achieve UL94 V-0 rating with an LOI value of 29.3%. The tenacity at break of PA6 fiber decreased from 4.85 to 3.11 cN·dtex–1 for MCA/PA6-8 composite fiber. However, the MCA/PA6 composite fibers can effectively suppress the propagation of flame in fabric. This means that the in situ polymerization approach paves the way for the preparation of MCA/PA6 composites that have good spinnability and flame retardancy.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 127 ◽  
Author(s):  
Yu Sun ◽  
Yazhen Wang ◽  
Li Liu ◽  
Tianyuan Xiao

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) acrylate, (6-oxidodibenzo [c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA), has been prepared. Copolymers of styrene (St) and DOPOAA were prepared by emulsion polymerization. The chemical structures of copolymers containing levels of DOPOAA were verified using Fourier transform infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties and flame-retardant behaviors of DOPO-containing monomers and copolymers were observed using thermogravimetric analysis and micro calorimetry tests. From thermogravimetric analysis (TGA), it was found out that the T5% for decomposition of the copolymer was lower than that of polystyrene (PS), but the residue at 700 °C was higher than that of PS. The results from micro calorimetry (MCC) tests indicated that the rate for the heat release of the copolymer combustion was lower than that for PS. The limiting oxygen index (LOI) for combustion of the copolymer rose with increasing levels of DOPOAA. These data indicate that copolymerization of the phosphorus-containing flame-retardant monomer, DOPOAA, into a PS segment can effectively improve the thermal stability and flame retardancy of the copolymer.


2016 ◽  
Vol 16 (9) ◽  
pp. 9919-9924 ◽  
Author(s):  
Shanshan Wei ◽  
Leyu Wang ◽  
Ce Liu ◽  
Mulin Yu ◽  
Xianhong Chen ◽  
...  

2021 ◽  
Author(s):  
Na Li ◽  
Panpan Chen ◽  
Dongni Liu ◽  
Gaowei Kang ◽  
Liu Liu ◽  
...  

Abstract Cotton fibers as original materials of cotton fabrics have a widely application due to its perfect hygroscopicity, air permeability and largest annual output. However, cotton materials have potential safety hazard during its application because of flammability (limiting oxygen index is about 18%). In order to improve the flame retardancy of cotton fibers and reduce the damage of its mechanical properties, novel P/Si based flame retardant (PFR) nanoparticles were synthesized by one-step radical polymerization. Vinyl phosphoric acid and tetramethyl divinyl disiloxane were introduced into the nanoparticles. The structure, morphology and thermal stability of PFR was characterized by fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis test (TGA). Durable flame retardant cotton fibers were prepared by dip-coating and plasma induced crosslinking methods. Micro-calorimeter (MCC) characterization showed that the peak of heat release rate (pHRR) and the total heat release were reduced by 47.3% and 29.8% for modified cotton fibers compared with pure cotton fibers. Limiting oxygen index (LOI) of modified cotton fibers was increased to 27%. The residue carbon of modified cotton fibers was 19.0% at 700 o C, while the value of pure cotton fibers was 3.0%. Besides, durability of the modified cotton fibers was approved by cyclic washing test. In addition, flame retardant mechanism was revealed by collecting and analyzing condensed and gaseous pyrolysis products. The data of FE-SEM for residue carbon, FT-IR spectra of products at different pyrolysis temperatures and pyrolysis gas chromatography mass spectrometry (Py-GC-MS) showed that PFR was a synergistic flame retardant contained barrier and quenching effecting applied on cotton materials.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 657 ◽  
Author(s):  
Jelena Vasiljević ◽  
Marija Čolović ◽  
Nataša Čelan Korošin ◽  
Matic Šobak ◽  
Žiga Štirn ◽  
...  

The production of sustainable and effective flame retardant (FR) polyamide 6 (PA6) fibrous materials requires the establishment of a novel approach for the production of polyamide 6/FR nanodispersed systems. This research work explores the influence of three different flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives on the comprehensive properties of in situ produced PA6/FR systems. To this end, in situ water-catalyzed ring-opening polymerization of ε-caprolactam was conducted in the presence of three different bridged DOPO derivatives, e.g., one P−N bond phosphonamidate derivative and two P−C bond phosphinate derivatives. The selected bridged DOPO derivatives mainly act in the gas phase at the temperatures that relatively match the PA6 pyrolysis specifics. The effects of the FRs on the dispersion state, morphological, molecular, structural, melt-rheological, and thermal properties of the in situ synthesized PA6 were evaluated. The specific advantage of this approach is one-step production of PA6 with uniformly distributed nanodispersed FR, which was obtained in the case of all three applied FRs. However, the applied FRs differently interacted with monomer and polymer during the polymerization, which was reflected in the length of PA6 chains, crystalline structure, and melt-rheological properties. The applied FRs provided a comparable effect on the thermal stability of PA6 and stabilization of the PA6/FR systems above 450 °C in the oxygen-assisted pyrolysis. However, only with the specifically designed FR molecule were the comprehensive properties of the fiber-forming PA6 satisfied for the continuous conduction of the melt-spinning process.


2014 ◽  
Vol 789 ◽  
pp. 174-177 ◽  
Author(s):  
Zhi Hao Wu ◽  
Li Li Li ◽  
Shuai Shuai Jiang ◽  
Ze Xu Hu ◽  
Yu Chen Mao ◽  
...  

Recycled-polyester (RPET) was melt blended with the phosphorus-containing flame retardant (FRP) and α-zirconium phosphate (α-ZrP). The thermal properties of RPET/FRP/α-ZrP composites were analyzed. Modified RPET fibers were prepared through melt spinning of dried RPET nanocomposite chips. The mechanical properties and fire-retardant properties of RPET/FRP/α-ZrP fibers containing different α-ZrP contents were tested. The results show that the synergism of α-ZrP and FRP exerts a positive effect on the mechanical and the flame-retardant property of RPET, leading to nanocomposite fibers of 1.9cN/dtex and 31.6% limiting oxygen index (LOI) value.


2013 ◽  
Vol 671-674 ◽  
pp. 1809-1812
Author(s):  
Shao Hong Xu ◽  
Xiao Yu Sui ◽  
Zheng Zhou Wang

Flammability of toughened phenolic (PF) foams containing ammonium polyphosphate (APP), melamine phosphate (MP) or melamine cyanurate(MCA) was studied by limiting oxygen index (LOI). The LOI values show that APP or MP is an effient flame retardant than MCA in the toughened PF foams. The thermal decomposition and mechanical properties of the phenolic foams were also investigated.


2009 ◽  
Vol 113 (4) ◽  
pp. 2109-2116 ◽  
Author(s):  
Zhi-Yong Wu ◽  
Wei Xu ◽  
Yao-Chi Liu ◽  
Jin-Kui Xia ◽  
Qian-Xin Wu ◽  
...  

2014 ◽  
Vol 36 (5) ◽  
pp. 892-896 ◽  
Author(s):  
Lili Li ◽  
Zhihao Wu ◽  
Shuaishuai Jiang ◽  
Sideng Zhang ◽  
Shouyang Lu ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (17) ◽  
pp. 9261-9271 ◽  
Author(s):  
Ke Liu ◽  
Yuanyuan Li ◽  
Lei Tao ◽  
Ru Xiao

Intrinsically flame retardant polyamide 6 (FRPA6) was synthesized by melt polycondensation of caprolactam and 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10-phosphaphenanthrene-10-oxide (DDP). And the FRPA6 fibres were prepared by melt spinning.


Sign in / Sign up

Export Citation Format

Share Document