Flammability and Mechanical Properties of Toughened Phenolic Foams Containing APP, MP and MCA

2013 ◽  
Vol 671-674 ◽  
pp. 1809-1812
Author(s):  
Shao Hong Xu ◽  
Xiao Yu Sui ◽  
Zheng Zhou Wang

Flammability of toughened phenolic (PF) foams containing ammonium polyphosphate (APP), melamine phosphate (MP) or melamine cyanurate(MCA) was studied by limiting oxygen index (LOI). The LOI values show that APP or MP is an effient flame retardant than MCA in the toughened PF foams. The thermal decomposition and mechanical properties of the phenolic foams were also investigated.

2013 ◽  
Vol 652-654 ◽  
pp. 7-10
Author(s):  
Zheng Zhou Wang ◽  
Shao Hong Xu

Flammability of polypropylene/vinyl acetate copolymer (PP/EVA) composites containing melamine phosphate (MP) and pentaerythritol (PER) was studied by limiting oxygen index (LOI), and UL 94. It is found that the LOI values decrease with the increase of EVA content in the PP/EVA composites. The thermal decomposition were investigated by thermogravimetric analysis. Moreover, the mechanical properties of the PP/EVA composites were studied. Compared with the flame retarded PP/EVA composites, the incorporation of a small amount of the peroxide (DCP) into the flame retarded composites leads to an increase in both tensile properties and flame retardancy.


2011 ◽  
Vol 175-176 ◽  
pp. 465-468 ◽  
Author(s):  
Lei Shi ◽  
Hua Wu Liu ◽  
Ping Xu ◽  
Dang Feng Zhao

Plain weave fabrics of polyacrylonitrile pre-oxidation yarns (PANOF) were prepared by small rapier loom. The flame retardation properties, mechanical properties and wear behaviors of PANOF plain weave fabrics were tested. The limiting oxygen index (LOI) of these PANOF plain weave fabric samples was 31%, which meets the criterion of flame-retardant fabrics. These fabrics neither melt nor shrunk when left in flame for a short period of time and the fabric structures were well maintained. Compared with flammable polyacrylonitrile fabrics, the polyacrylonitrile pre-oxidation fabrics exhibited excellent flame retardation properties, with satisfactory mechanical properties and comfortable handle.


2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


2013 ◽  
Vol 791-793 ◽  
pp. 72-75
Author(s):  
Zheng Zhou Wang ◽  
Shao Hong Xu ◽  
Yan Ping Deng

Flammability of polyethylene glycol toughened phenolic (PF) foams containing nanomelamine phosphate (NMP), nanomelamine cyanurate (NMCA) or their capsules was studied by limiting oxygen index (LOI). The effect of the nanoparticles and their micro counterparts on flame retardant and mechanical properties of the toughened foams is compared.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1932 ◽  
Author(s):  
Benjamin Zirnstein ◽  
Dietmar Schulze ◽  
Bernhard Schartel

In this study, multicomponent flame retardant systems, consisting of ammonium polyphosphate (APP), aluminum trihydroxide (ATH), and polyaniline (PANI), were used in ethylene propylene diene monomer (EPDM) rubber. The multicomponent system was designed to improve flame retardancy and the mechanical properties of the rubber compounds, while simultaneously reducing the amount of filler. PANI was applied at low loadings (7 phr) and combined with the phosphorous APP (21 phr) and the mineral flame retardant ATH (50 phr). A comprehensive study of six EPDM rubbers was carried out by systematically varying the fillers to explain the impact of multicomponent flame retardant systems on mechanical properties. The six EPDM materials were investigated via the UL 94, limiting oxygen index (LOI), FMVSS 302, glow wire tests, and the cone calorimeter, showing that multicomponent flame retardant systems led to improved fire performance. In cone calorimeter tests the EPDM/APP/ATH/PANI composite reduced the maximum average rate of heat emission (MARHE) to 142 kW·m−2, a value 50% lower than that for the unfilled EPDM rubber. Furthermore, the amount of phosphorus in the residues was quantified and the mode of action of the phosphorous flame retardant APP was explained. The data from the cone calorimeter were used to determine the protective layer effect of the multicomponent flame retardant systems in the EPDM compounds.


2017 ◽  
Vol 52 (4) ◽  
pp. 519-530 ◽  
Author(s):  
Lemiye Atabek Savas ◽  
Aysenur Mutlu ◽  
Ali Sinan Dike ◽  
Umit Tayfun ◽  
Mehmet Dogan

The effects of carbon fiber amount and length were studied on the flame retardant, thermal, and mechanical properties of the intumescent polypropylene composites. The flame retardant properties of the intumescent polypropylene-based composites were investigated using limiting oxygen index, vertical burning test (UL-94), and mass loss calorimeter. The mechanical properties of the composites were studied using tensile test and dynamic mechanical analysis. According to the flammability tests results, the antagonistic interaction was observed between carbon fiber and ammonium polyphosphate. The limiting oxygen index value reduced steadily as the added amount of carbon fiber increased. Mechanical test results revealed that the addition of carbon fiber increased the tensile strength and the elastic modulus as the added amount increased. No effect of carbon fiber length was observed on the flammability, fire performance, and tensile properties of composites, whereas the elastic modulus increased as the carbon fiber initial length increased.


2011 ◽  
Vol 284-286 ◽  
pp. 1831-1835
Author(s):  
Zheng Zhou Wang ◽  
Lin Liu ◽  
Gan Xin Jie ◽  
Ping Kai Jiang

Flame retarded ethylene-vinyl acetate copolymer (EVA) was prepared in a melt process containing melamine phosphate (MP), or MP in combination with dipentaerythritol (DPER) as flame retardants. The influence of MP and MP/DPER on flame retardant properties of EVA was investigated by limiting oxygen index (LOI) and UL 94 test. Thermal decomposition of the flame retardants and flame retarded EVA composites was studied by the thermogravimetric analysis. The results show that MP used alone in EVA does not exerts good flame retardancy, even at a loading of 50wt%. It is found that the flame retardant properties of the EVA/MP/DPER composites is greatly improved when a suitable amount of MP substituted by DPER. Moreover, mechanical properties of the EVA composites were studied.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3221
Author(s):  
Feiyue Wang ◽  
Jiahao Liao ◽  
Long Yan ◽  
Hui Liu

A novel diaminodiphenylmethane (DDM) modified ammonium polyphosphate (APP) flame retardant, DDP, was successfully synthesized via ion-exchange reaction. DDP was introduced into epoxy resins (EPs) to reduce flammability. A comparable level of DDP exerts better flame-retardant and smoke suppression efficiencies in EP than APP. An EP blend containing 15 wt% DDP displays a limiting oxygen index (LOI) value of 37.1% and a UL 94 V-0 rating, and further exhibits a 32.3% reduction in total heat release and a 48.0% reduction in total smoke production compared with pure EP. The presence of DDP greatly facilitates char formation during combustion, and the char mass from thermal decomposition of an EP blend is 37.8% smaller than that of an EP blend containing 15 wt% DDP at 800 °C. The incorporation of DDP into EP blends has a smaller impact on the glass transition temperature and tensile strength than those of a comparable level of APP. This reflects the better compatibility of DDP with the EP matrix compared with that for APP.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012031
Author(s):  
Xiangdong Zhu ◽  
Yijun Chen ◽  
Chongguang Zang

Abstract In this study, to improve the flame retardancy properties of polypropylene, DBDPE/Sb2O3 and DBDPE/HBCD/Sb2O3 flame retardant systems were used for flame retardant PP, and a halogen-free flame retardant PP material was prepared using the one-component intumescent flame retardant PNP1D. Tensile tests, impact tests, ultimate oxygen index, UL94V-0 vertical combustion, thermogravimetric analysis, rheological analysis and scanning electron microscopy were used to study the flame retardant properties and mechanical properties of the flame retardant PP. The test results show that both the ultimate oxygen index of DBDPE/Sb2O3 compounded flame retardant PP and the ultimate oxygen index of PNP1D flame retardant PP are nearly double that of pure PP, passing the UL-94V-0 flame retardant standard. The thermal decomposition temperature range of DBDPE/Sb2O3 compounded system and the thermal decomposition temperature range of PNP1D flame retardant PP both completely cover the thermal decomposition temperature range of both the DBDPE/Sb2O3 compound system and PNP1D flame retardant PP completely covered the thermal decomposition temperature range of pure PP. The tensile and impact strength of the DBDPE/Sb2O3 flame retardant system with 10% SK-80 is 50% higher than that of the DBDPE/Sb2O3 flame retardant system without SK-80. The modified PP with 25% PNP1D is nearly 1 time higher than pure PP in terms of carbon formation and has an ideal flame retardant effect.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Weiguo Yao ◽  
Hanmo Wang ◽  
Dongbo Guan ◽  
Tao Fu ◽  
Tianqi Zhang ◽  
...  

Soluble ammonium polyphosphate (SAPP) is employed to prepare flame retardant semirigid polyurethane foam (SPUF) using water as blowing agent. The flame retardant property of SPUF is evaluated by limiting oxygen index (LOI) and horizontal burning test. Also the thermal degradation mechanism is studied by TG and Fourier transform infrared (FTIR). The results show that, with the increase of the content of SAPP, flame retardant property of SPUF improves obviously as the LOI value increases and the horizontal burning rate decreases. And residual char is increased up to 20% with 19 wt% SAPP. Moreover, the mechanical property of SPUF is enhanced dramatically.


Sign in / Sign up

Export Citation Format

Share Document