Direct Synthesis Controller Identification

2012 ◽  
Vol 622-623 ◽  
pp. 1498-1502
Author(s):  
Lemma Dendena Tufa

Direct synthesis controller design approach has serious limitations when it is applied to plant models that have more complex models and models involving time delays. In such cases the design becomes more cumbersome and the time delay appears in the denominator making it difficult to realize. In order to get simple realizable controllers approximations of plant model and time delays are done. This leads to controllers with non-optimal parameters. In this paper, a new approach for designing the controller by combining direct synthesis approach and system identification is presented. The controller is identified from the plant model and the desired closed-loop without the need for approximating the plant model and the time delay and ensures that the controller parameters are optimal.

2020 ◽  
Vol 8 (7) ◽  
pp. 477 ◽  
Author(s):  
Evgeny I. Veremey ◽  
Sergei V. Pogozhev ◽  
Margarita V. Sotnikova

One analytical design problem involves constructing control laws for marine autopilot systems. Despite numerous known solutions, this problem can still be further developed by taking into account the actual conditions of the control system operation. An important issue for discussion is the feedback synthesis for marine ships with time delays in their rudders’ actuators. In this work, a new approach is proposed for providing all the desirable dynamic features of a closed-loop system with autopilot while taking into account the presence of a time delay. This approach is based on the predictive compensation of time delays via the specific transformation of an initially given reference controller with a special multipurpose structure. The applicability and effectiveness of the proposed method is further illustrated by a practical example of a controller design.


1997 ◽  
Vol 119 (2) ◽  
pp. 271-277 ◽  
Author(s):  
Jenq-Tzong H. Chan

In this paper, we present a modified method of data-based LQ controller design which is distinct in two major aspects: (1) one may prescribe the z-domain region within which the closed-loop poles of the LQ design are to lie, and (2) controller design is completed using only plant input and output data, and does not require explicit knowledge of a parameterized plant model.


Author(s):  
Mingxuan Sun ◽  
He Li ◽  
Yanwei Li

Fractional uncertainties are involved in many practical systems. Currently, there is a lack of research results about such general class of nonlinear systems in the context of learning control. This paper presents a Lyapunov-synthesis approach to repetitive learning control (RLC) being unified due to the use of the direct parametrization and adaptive bounding techniques. To effectively handle fractional uncertainties, the estimation method for such uncertainties is elaborated to facilitate the controller design and convergence analysis. Its novelty lies in the less requirement for the knowledge about the system undertaken. Unsaturated- and saturated-learning algorithms are, respectively, characterized by which both the boundedness of the variables in the closed-loop system undertaken and the asymptotical convergence of the tracking error are established. Experimental results are provided to verify the effectiveness of the presented learning control.


2009 ◽  
Vol 346 (1) ◽  
pp. 38-56 ◽  
Author(s):  
A. Seshagiri Rao ◽  
V.S.R. Rao ◽  
M. Chidambaram

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Alexander Molina-Cabrera ◽  
Mario A. Ríos ◽  
Yvon Besanger ◽  
Nouredine Hadjsaid ◽  
Oscar Danilo Montoya

Time-delay is inherent to communications schemes in power systems, and in a closed loop strategy the presence of latencies increases inter-area oscillations and security problems in tie-lines. Recently, Wide Area Measurement Systems (WAMS) have been introduced to improve observability and overcome slow-rate communications from traditional Supervisory Control and Data Acquisition (SCADA). However, there is a need for tackling time-delays in control strategies based in WAMS. For this purpose, this paper proposes an Enhanced Time Delay Compensator (ETDC) approach which manages varying time delays introducing the perspective of network latency instead dead time; also, ETDC takes advantage of real signals and measurements transmission procedure in WAMS building a closed-loop memory control for power systems. The strength of the proposal was tested satisfactorily in a widely studied benchmark model in which inter-area oscillations were excited properly.


Sign in / Sign up

Export Citation Format

Share Document