Enhancing the Surface Quality by Iso Pulse Generator in EDM Process

2012 ◽  
Vol 622-623 ◽  
pp. 380-384 ◽  
Author(s):  
T. Muthuramalingam ◽  
B. Mohan

In automobile and aeronautical industries, complex moulds and dies is produced by Electrical Discharge Machining process. The surface finish is determined by the crater volume in EDM process. The amount of crater volume is influenced by the amount and distribution of discharge energy. The discharge energy is directly proportional to the average discharge current. This amount of current is determined by the duration of discharging effect. This study deals about evaluating the performance of iso current pulse generator on machining characteristics in EDM. Due to its ability of reducing stochastic nature in EDM process, iso pulse generator could produce better surface finish than conventional transistor pulse train generator with higher material removal rate.

2014 ◽  
Vol 941-944 ◽  
pp. 2127-2133 ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

The ability to machine advanced ceramic materials such as ZrO2, SiC, and AlN is of high interest for various industries because of the extraordinary material properties that these ceramics possess. Once sintered, these ceramics are characterized with high mechanical strength, high thermal stability and high chemical inertness. Therefore it is extremely difficult to machine these ceramics with dimensions in few microns using traditional techniques. Electrical discharge machining (EDM) is an electro-thermal machining process used to structure conductive materials. By applying a conductive layer on top of the non-conductive material, the EDM process can also be used to machine the non-conductive material. This paper presents a study on the effect of tool polarity and tool rotation on the material removal rate and electrode wear ratio during the EDM process of non-conductive SiC, ZrO2 and AlN ceramics. The reasons for the variation in the material removal rates among the different ceramics are examined by comparing the material properties. Relatively lower value of flexural strength, fracture toughness and melting temperature is the reason for AlN ceramic to have the higher MRR than SiC and ZrO2 ceramics.


2013 ◽  
Vol 315 ◽  
pp. 30-34
Author(s):  
Muhammad Zulhisham Ahmed Zaki ◽  
M. Azuddin

This paper presents the investigation on Electrical Discharge Machining (EDM) on ASSAB 618 steel using copper electrode. The sparking power was generated using Resistor Capacitor (RC) Circuit and not usual Transistor Pulse Generator Circuit. The performance of the electrodes in the EDM RC circuit was evaluated based on the achieved surface roughness with respect to material removal rate (MRR) and electrode wear ratio (EWR). In this study, investigations have been conducted with surface finish at different discharge energy output. It was found that the surface characteristics are dependent mostly on the discharge energy during machining. The fine finish electrical discharge machining requires minimization of the discharge energy supplied into the gap. In addition, the surface finish was found to be influenced greatly by the electrical and thermal properties of the electrode material.


2019 ◽  
Vol 26 (05) ◽  
pp. 1830008 ◽  
Author(s):  
K. P. MAITY ◽  
M. CHOUBEY

Electrical discharge machining (EDM) is an unconventional machining process used for machining of hard-to-cut materials. Both EDM and micro-EDM processes are extensively used for producing dies and molds, complex cavities, and 3D structures. In recent years, researchers have intensively focused on improving the performance of both micro-EDM and EDM processes. This paper reviews the research work carried out by the researchers on vibration-assisted EDM, micro-EDM, and wire EDM. The consolidated review of this research work enables better understanding of the vibration-assisted EDM process. This study also discusses the influence of vibration parameters such as vibration frequency and amplitude on the material removal rate (MRR), electrode wear rate (EWR), and surface roughness (SR). The important issues and research gaps in the respective area of research are also presented in this paper.


2014 ◽  
Vol 554 ◽  
pp. 638-642
Author(s):  
Minhat Ade Erawan ◽  
Azli Yahya ◽  
Khamis Nor Hisham ◽  
Samion Syahrullail ◽  
Abu Bakar Zurkarmawan ◽  
...  

Electrical Discharge Machining (EDM) is a non-conventional manufacturing process of removing materials. The uniqueness of EDM process is the removal of the unwanted materials without direct contact between the electrode and workpiece. EDM power generator provides power source of EDM system. It supplies voltage and current to produce spark erosion. Power supply and pulse generator are two important parts in EDM power generator. By choosing the proper power supply and pulse generator to the application, a great result for Material Removal Rate (MRR) can be achieved. Efficiency of EDM power generator depends on the configurations of power supply used. This study reviews and summarizes some previous development of EDM power generator and their effectiveness.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1806-1808

Ceramic materials which have high hardness and brittleness cannot be machined by traditional machining process because of their low efficiency and feasibility. But in non-traditional machining process, it overcomes these limitations proving it to be very useful in manufacturing process. In this review paper we are discussing about electrical discharge machining (EDM) process on Al2O3 and Si3N4 ceramic materials which are machine able. EDM parameters like material removal rate (MRR), tool wear rate (TWR), surface finish are discussed. EDM is very much suitable for ceramic materials because of its high surface finish, accuracy and efficiency.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Manufacturing ◽  
2003 ◽  
Author(s):  
Scott F. Miller ◽  
Albert J. Shih

The development of new, advanced engineering materials and the needs for precise and flexible prototype and low-volume production have made wire electrical discharge machining (EDM) an important manufacturing process to meet such demand. This research investigates the effect of spark on-time duration and spark on-time ratio, two important EDM process parameters, on the material removal rate (MRR) and surface integrity of four types of advanced material: porous metal foams, metal bond diamond grinding wheels, sintered Nd-Fe-B magnets, and carbon-carbon bipolar plates. An experimental procedure was developed. During the wire EDM, five types of constraints on the MRR due to short circuit, wire breakage, machine slide speed limit, and spark on-time upper and lower limits have been identified. An envelope of feasible EDM process parameters is created and compared across different work-materials. Applications of such process envelope to select process parameters for maximum MRR and for machining of micro features are presented.


Author(s):  
Sagil James ◽  
Sharadkumar Kakadiya

Shape Memory Alloys are smart materials that tend to remember and return to its original shape when subjected to deformation. These materials find numerous applications in robotics, automotive and biomedical industries. Micromachining of SMAs is often a considerable challenge using conventional machining processes. Micro-Electrical Discharge Machining is a combination of thermal and electrical processes, which can machine any electrically conductive material at micron scale independent of its hardness. It employs dielectric medium such as hydrocarbon oils, deionized water, and kerosene. Using liquid dielectrics has adverse effects on the machined surface causing cracking, white layer deposition, and irregular surface finish. These limitations can be minimized by using a dry dielectric medium such as air or nitrogen gas. This research involves the experimental study of micromachining of Shape Memory Alloys using dry Micro-Electrical Discharge Machining process. The study considers the effect of critical process parameters including discharge voltage and discharge current on the material removal rate and the tool wear rate. A comparison study is performed between the Micro-Electrical Discharge Machining process with using the liquid as well as air as the dielectric medium. In this study, microcavities are successfully machined on shape memory alloys using dry Micro-Electrical Discharge Machining process. The study found that the dry Micro-Electrical Discharge Machining produces a comparatively better surface finish, has lower tool wear and lesser material removal rate compared to the process using the liquid as the dielectric medium. The results of this research could extend the industrial applications of Micro Electrical Discharge Machining processes.


2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


Sign in / Sign up

Export Citation Format

Share Document