Dynamics and Trajectory Tracking of a Spherical Rolling Robot on an Inclined Plane

2012 ◽  
Vol 625 ◽  
pp. 151-154 ◽  
Author(s):  
Tao Yu ◽  
Han Xu Sun ◽  
Qing Xuan Jia ◽  
Yan Heng Zhang ◽  
Wei Zhao

In this paper, we derive the dynamics of a spherical rolling robot, called BYQ-III, rolling without slipping on an inclined plane through the constrained Lagrange method. We present a state space realization of this constrained system, and develop a control algorithm for stabilizing the robot to track a desired trajectory on the inclined plane based on input-output feedback linearization. The validity of the proposed control scheme is then verified through simulation study.

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Zeyu Shi ◽  
Yingpin Wang ◽  
Yunxiang Xie ◽  
Lanfang Li ◽  
Xiaogang Xu

Active power filter (APF) is the most popular device in regulating power quality issues. Currently, most literatures ignored the impact of grid impedance and assumed the load voltage is ideal, which had not described the system accurately. In addition, the controllers applied PI control; thus it is hard to improve the compensation quality. This paper establishes a precise model which consists of APF, load, and grid impedance. The Bode diagram of traditional simplified model is obviously different with complete model, which means the descriptions of the system based on the traditional simplified model are inaccurate and incomplete. And then design exact feedback linearization and quasi-sliding mode control (FBL-QSMC) is based on precise model in inner current loop. The system performances in different parameters are analyzed and dynamic performance of proposed algorithm is compared with traditional PI control algorithm. At last, simulations are taken in three cases to verify the performance of proposed control algorithm. The results proved that the proposed feedback linearization and quasi-sliding mode control algorithm has fast response and robustness; the compensation performance is superior to PI control obviously, which also means the complete modeling and proposed control algorithm are correct.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 597
Author(s):  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Tanvir Ahmed ◽  
Asif Al Zubayer Swapnil ◽  
Mohammad AssadUzZaman ◽  
...  

The research presents a novel controller designed for robotic systems subject to nonlinear uncertain dynamics and external disturbances. The control scheme is based on the modified super-twisting method, input/output feedback linearization, and time delay approach. In addition, to minimize the chattering phenomenon and ensure fast convergence to the selected sliding surface, a new reaching law has been integrated with the control law. The control scheme aims to provide high performance and enhanced accuracy via limiting the effects brought by the presence of uncertain dynamics. Stability analysis of the closed-loop system was conducted using a powerful Lyapunov function, showing finite time convergence of the system’s errors. Lastly, experiments shaping rehabilitation tasks, as performed by healthy subjects, demonstrated the controller’s efficiency given its uncertain nonlinear dynamics and the external disturbances involved.


2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wenqing Zhang ◽  
Jie Li ◽  
Kun Zhang ◽  
Peng Cui

Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB) controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT) in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.


Author(s):  
Abdelkarim Ammar

Purpose This paper aims to propose an improved direct torque control (DTC) for the induction motor’s performance enhancement using dual nonlinear techniques. The exact feedback linearization is implemented to create a linear decoupled control. Besides, the fuzzy logic control approach has been inserted to generate the auxiliary control input for the feedback linearization controller. Design/methodology/approach To improve the DTC for induction motor drive, this work suggests the incorporation of two nonlinear approaches. As the classical feedback linearization suffers while the presence of uncertainties and modeling inaccuracy, it is recommended to be associated to another robust control approach to compensate the uncertainties of the model and make a robust control versus the variations of the machine parameters. Therefore, fuzzy logic controllers will be integrated as auxiliary inputs to the feedback linearization control law. Findings The simulation and the experimental validation of the proposed control algorithm show that the association of dual techniques can effectively achieve high dynamic behavior and improve the robustness against parameters variation and external disturbances. Moreover, the space vector modulation is used to preserve a fixed switching frequency, reduce ripples and low switching losses. Practical implications The theoretical, simulation and experimental studies prove that the proposed control algorithm can be used on different AC machines for variable speed drive applications such as oil drilling, traction systems and wind energy conversion systems. Originality/value The proposed DTC strategy has been developed theoretically and realized through simulation and experimental implementation. Different operation conditions have been conducted to check the ability and robustness of the control strategy, such as steady state, speed reversal maneuver, low-speed operation and parameters variation test with load application.


Sign in / Sign up

Export Citation Format

Share Document