CdSe Thin Film by Using Spin-Coating

2012 ◽  
Vol 626 ◽  
pp. 401-403 ◽  
Author(s):  
C.H. Rosmani ◽  
S. Abdullah ◽  
Mohamad Rusop

CdSe thin film was prepared by using spin coating method .The surface morphology of CdSe thin films can be used as the main material in solar cells application, by using sodium selenosulfate as a selenium source and cadmium chloride as cadmium precursor. The solution for each sample had with different molar ratio of cadmium chloride and sodium selenosulfate to know the comparison between the samples. The spin for each samples were constant parameter with 3000 rpm at 30 seconds and dry in ambient temperature. The characterization using atomic force microscopy (AFM) to know the surface morphology of CdSe thin film. The important thing in this paper was to know the surface morphology of CdSe thin films as the comparison with other experiment for solar cells application.

Author(s):  
Dedi Riyan Rizaldi ◽  
Aris Doyan ◽  
Susilawati Susilawati

ABSTRAKTelah dilakukan penelitian sintesis lapisan tipis TiO2 dengan doping campuran Fluorin dan Indium. Tujuan penelitian ini untuk menghasilkan lapisan tipis yang baik digunakan sebagai salah satu komponen pada sel surya yaitu lapisan absorben. Sintesis lapisan tipis menggunakan metode spin-coating dengan bantuan alat centrifuge yang dimodifikasi. Penelitian ini dilaksanakan di Laboratorium Kimia Dasar dan Kimia Organik, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mataram. Jenis penelitian ini adalah penelitian eksperimen murni dengan data dianalisis secara deskriptif. Proses sintesis lapisan tipis terdiri dari beberapa tahapan yaitu 1). Persiapan substrat, 2). Pembuatan larutan sol-gel, 3). Deposisi lapisan tipis, dan 4). Pemanasan sampel lapisan tipis. Sampel lapisan tipis diberikan tiga perlakuan berbeda yang terdiri dari 1). Konsentrasi larutan, 2). Jumlah lapisan, dan 3). Variasi suhu pemanasan sampel. Berdasarkan penelitian yang sudah dilakukan didapatkan bahwa semakin besar konsentrasi doping yang digunakan maka semakin gelap permukaan sampel lapisan tipis yang dihasilkan. Kata kunci: sintesis lapisan tipis; TiO2:(F+In); metode spin-coating; sel surya. ABSTRACTResearch on the synthesis of TiO2 thin films with doping mixture of Fluorine and Indium has been carried out. The aim of this research is to produce a thin film which is suitable for use as a component of solar cells, namely the absorbent layer. Synthesis of thin films using the spin-coating method with the help of a modified centrifuge. This research was conducted at the Laboratory of Basic Chemistry and Organic Chemistry, Faculty of Mathematics and Natural Sciences, Mataram University. This type of research is pure experimental research with data analyzed descriptively. The thin layer synthesis process consists of several stages, namely 1). Substrate preparation, 2). Preparation of sol-gel solution, 3). Thin layer deposition, and 4). Heating the thin layer sample. The thin layer sample was given three different treatments consisting of 1). The concentration of the solution, 2). Number of layers, and 3). Variation in sample heating temperature. Based on the research that has been done, it was found that the greater the doping concentration used, the darker the surface of the resulting thin layer sample. Keywords: synthesis thin film, TiO2:(F+In), spin-coating method, solar cells


2011 ◽  
Vol 13 ◽  
pp. 87-92 ◽  
Author(s):  
M.S.P Sarah ◽  
F.S. Zahid ◽  
M.Z. Musa ◽  
U.M. Noor ◽  
Z. Shaameri ◽  
...  

The photoconductivity of a nanocomposite MEH-PPV:TiO2 thin film is investigated. The nanocomposite MEH-PPV:TiO2 thin film was deposited on a glass substrate by spin coating technique. The composition of the TiO2 powder was varied from 5 wt% to 20 wt% (with 5 wt% interval). The concentration of the MEH-PPV is given by 1 mg/1 ml. The current voltage characteristics were measured in dark and under illumination. The photoconductivity showed increment in value as the composition of the TiO2 is raised in the polymer based solution. The absorption showed augmentation as the amount of TiO2 is increased. The escalation of the current voltage is then supported by the results of surface morphology.


2021 ◽  
Vol 16 (2) ◽  
pp. 136-141
Author(s):  
Jingyuan Zhang ◽  
Yusheng Liu ◽  
Jianing Song ◽  
Mu Zhang ◽  
Xiaodong Li

The Cu2ZnSnS4 (CZTS) thin films were fabricated by the direct solution coating method using a novel non-particulate ink. The ink was formulated using ethanol as the solvent and 1,2-diaminopropane as the complex-ing agent. The pure phase kesterite films with good crystallinity, large-sized crystals and excellent electrical properties were prepared by the spin-coating deposition technique using the homogeneous and air-stable ink. It was found that the subsequent pre-treatment temperature had an influence on the film crystallinity and electrical properties. The best film was obtained by pre-treating the spin-coated film at 250 °C, and then post-annealing at 560 °C. The film shows a narrow bandgap of 1.52 eV and excellent electrical properties, with a resistivity of 0.07 Ocm, carrier concentration of 3.0 x 1017 cm-3, and mobility of 4.15 cm2 V-1 s-1. The novel non-particulate ink is promising for printing high quality CZTS thin films as absorber layers of thin film solar cells.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qian Li ◽  
Jinpeng Hu ◽  
Yaru Cui ◽  
Juan Wang ◽  
Jinjing Du ◽  
...  

To reduce the formation of the impurity phase, a buffer volume can be used to expands and smooths the surface of Cu2ZnSnS4(CZTS) thin film. In this study, a Cu-Zn-Sn-O(CZTO) precursor was synthesized through the process of coprecipitation-calcination-ball milling-spin coating. The influence of pH, temperature, and PVP on the constituent of hydroxides was investigated in the process of coprecipitation. Cu-Zn-Sn-O with appropriate compositions could be obtained by regulating the temperature and preservation time of the calcination stage. After ball milling to form a nano ink, and then spin coating, SEM images proved the generation of CZTO precursors, which effectively promoted the formation of Cu2ZnSnS4 thin films. Finally, the phase, microstructure, chemical composition, and optical properties of the Cu2ZnSnS4 thin films prepared by sulfurized annealing CZTO precursors were characterized by EDX, XRD, Raman, FESEM, Hall effect, and UV methods. The prepared CZTS thin film demonstrated a band gap of 1.30 eV, which was suitable for improving the performance of CZTS thin film solar cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Abdullah Uzum ◽  
Hiroyuki Kanda ◽  
Takuma Noguchi ◽  
Yuya Nakazawa ◽  
Shota Taniwaki ◽  
...  

Aluminum acetylacetonate-based AlOx thin films were introduced as a low-cost, high-quality passivation layers for crystalline silicon solar cells. Films were formed by a spin coating method on p-type silicon substrates at 450°C in ambient air, O2, or water vapor (H2O/O2) for 15 or 120 min. XPS analysis confirms the AlOx formation and reveals a high intensity of interfacial SiOx at the AlOx/Si interface of processed wafers. Ambient H2O/O2 was found to be more beneficial for the activation of introduced AlOx passivation films which offers high lifetime improvements with a low thermal budget. Carrier lifetime measurements provides that symmetrically coated wafers reach 119.3 μs and 248.3 μs after annealing in ambient H2O/O2 for 15 min and 120 min, respectively.


2021 ◽  
Vol 63 (8) ◽  
pp. 778-782
Author(s):  
Tülay Yıldız ◽  
Nida Katı ◽  
Kadriye Yalçın

Abstract In this study, undoped semiconductor ZnO thin film and Bi-doped ZnO thin films were produced using the sol-gel spin coating method. By changing each parameter of the spin coating method, the best conditions for the formation of the film were determined via the trial and error method. When the appropriate parameter was found, the specified parameter was applied for each film. The structural, superficial, and optical properties of the films produced were characterized via atomic force microscope (AFM), UV-visible spectroscopy, and Fourier transform infrared (FTIR), and the effects of Bi dopant on these properties were investigated. When the morphological properties of the undoped and Bi-doped ZnO films were examined, it was observed that they had a structure in a micro-fiber shape consisting of nanoparticles. When the surface roughness was examined, it was observed that the surface roughness values became larger as the rate of Bi dopant increased. By examining the optical properties of the films, it was determined that they were direct band transition materials and Bi-doped thin films were involved in the semiconductor range. In addition, optical properties changed positively with Bi dopant. Since Bi-doped ZnO thin film has a wide bandgap and good optical properties, it is a material that can be used in optoelectronic applications.


2013 ◽  
Vol 667 ◽  
pp. 371-374 ◽  
Author(s):  
M. Basri ◽  
Mohd Nor Asiah ◽  
Mohd Khairul bin Ahmad ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop Mahmood

Titanium Dioxide (TiO2) thin films have been prepared on glass substrates by using sol-gel method and spin-coating technique. The samples have been annealed at temperatures of 350°C ~ 500oC. The electrical and structural properties of the thin films due to the changes of annealing treatment process were investigated by 2 point probes I-V measurement and X-ray Diffraction (XRD) respectively. The result show that resistivity of the thin film decreased with annealing temperatures. XRD characterization indicates crystalline structure of TiO2 thin films improved as annealed at higher temperatures.


2019 ◽  
Vol 19 (1) ◽  
pp. 34-43
Author(s):  
H. Bruncková ◽  
Ľ. Medvecký ◽  
E. Múdra ◽  
A. Kovalčiková

AbstractNeodymium niobate NdNbO4 (NNO) and tantalate NdTaO4 (NTO) thin films (~100 nm) were prepared by sol-gel/spin-coating process on Pb(Zr0.52Ti0.48)O3/Al2O3 substrates with annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The XRD results of NNO and NTO films confirmed tetragonal T-NdNbO4 and T-NdTaO4 phases, respectively, with traces of monoclinic MNdNbO4 and M´-NdTaO4. The surface morphology and topography were investigated by SEM and AFM analysis. NTO was smoother with roughness 5.24 nm in comparison with NNO (6.95 nm). In the microstructure of NNO, small spherical (~ 20-50 nm) T-NdNbO4 and larger needle-like particles (~100 nm) of M-NdNbO4 phase were observed. The compact clusters composed of fine spherical T-NdTaO4 particles (~ 50 nm) and cuboidal M´-NdTaO4 particles (~ 100 nm) were found in NTO. The results of this work can contribute to formation of different polymorphs of films for the application in environmental electrolytic thin film devices.


2016 ◽  
Vol 13 (1) ◽  
pp. 43-49 ◽  
Author(s):  
P. S. Joshi ◽  
D. S. Sutrave

Ruthenium oxide, Manganese oxide and (Ru:Mn)O2 composite thin films have been prepared by 0.02M Ruthenium chloride and Manganese acetate solutions respectively on stainless steel substrates by sol-gel spin coating method. Layer by layer deposition of RuO2 and MnO2 was done for composite films. RuO2: MnO2 composite thin films have been demonstrated to be an excellent material for Supercapacitor application when evaluated with RuO2 and MnO2 thin film electrodes with respect to XRD, SEM, CV, CP and EIS studies. As a result, high specific capacitance of 515 F/g at 10 mV/s with excellent stability and long cycle life was obtained, where specific power and energy were as high as 15.38 Wh/kg and 4.06 KW/kg respectively with loading weight of 0.13 mg/cm2 .Composite films showed changes in structural and morphological features which was admiring for supercapacitor applications. The electrochemical impedance measurement was carried out in 0.1M KOH in the frequency range 10 to 105 Hz. From the analysis it can be concluded that mixed oxide composites have superior capacitive performance to single transition metal oxides as electrodes.


Sign in / Sign up

Export Citation Format

Share Document