Analysis of Sealing Ability of Premium Tubing Connection under Axial Alternating Tension Load

2013 ◽  
Vol 634-638 ◽  
pp. 3569-3572 ◽  
Author(s):  
Yi Hua Dou ◽  
Xing Wang ◽  
Yang Yu ◽  
Xiang Tong Yang

In order to know the sealing ability under axial alternating tension load, a 88.9mm×6.45mm P110 premium tubing connection is established with multiple linear elastic plastic finite element model, stress and contact pressure on sealing surface and torque shoulder are analyzed under axial alternating tension load and 80 MPa inner pressure. The results show that tubing connection slide by the axial tension, while the maximum contact pressure on seal surface reduced. With the increasing of alternating cycle, the maximum equivalent stress on seal surface increased and the maximum contact pressure on seal surface decreased. And, under limited loads, contact pressure on torque shoulder is affected little caused by alternating load.

2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


2021 ◽  
Vol 11 (10) ◽  
pp. 4709
Author(s):  
Dacheng Huang ◽  
Jianrun Zhang

To explore the mechanical properties of the braided corrugated hose, the space curve parametric equation of the braided tube is deduced, specific to the structural features of the braided tube. On this basis, the equivalent braided tube model is proposed based on the same axial stiffness in order to improve the calculational efficiency. The geometric model and the Finite Element Model of the DN25 braided corrugated hose is established. The numerical simulation results are analyzed, and the distribution of the equivalent stress and frictional stress is discussed. The maximum equivalent stress of the braided corrugated hose occurs at the braided tube, with the value of 903MPa. The maximum equivalent stress of the bellows occurs at the area in contact with the braided tube, with the value of 314MPa. The maximum frictional stress between the bellows and the braided tube is 88.46MPa. The tensile experiment of the DN25 braided corrugated hose is performed. The simulation results are in good agreement with test data, with a maximum error of 9.4%, verifying the rationality of the model. The study is helpful to the research of the axial stiffness of the braided corrugated hose and provides the base for wear and life studies on the braided corrugated hose.


Author(s):  
Dinu Thomas Thekkuden ◽  
Abdel-Hamid I. Mourad ◽  
Abdel-Hakim Bouzid

Abstract The stress corrosion cracking of tube-to-tubesheet joints is one of the major faults causing heat exchanger failure. After the expansion process, the stresses are developed in a plastically deformed tube around the tube-to-tubesheet joint. These residual stressed joints, exposed to tube and shell side fluids, are the main crack initiation sites. Adequate contact pressure at the tube-to-tubesheet interface is required to produce a quality joint. Insufficient tube-to-tubesheet contact pressure leads to insufficient joint strength. Therefore, a study on the residual stress and contact pressure that have a great significance on the quality of the tube-to-tubesheet joint is highly demanded. In this research, a 2D axisymmetric numerical analysis is performed to study the effect of the presence of grooves in the tubesheet and the expansion pressure length on the distribution of contact pressure and stress during loading and unloading of 400 MPa expansion pressure. The results show that the maximum contact pressure is independent of the expansion pressure length. However, the presence of grooves significantly increased the maximum contact pressure. It is proven that the presence of grooves in the tubesheet is distinguishable from the maximum contact pressure and residual von mises equivalent stress. The tube pull-out strength increases with the expansion pressure and the number of grooves. In conclusion, the presence of the grooves affects the tube-to-tubesheet joints.


2015 ◽  
Vol 15 (06) ◽  
pp. 1540049 ◽  
Author(s):  
XUEFENG BO ◽  
XI MEI ◽  
HUI WANG ◽  
WEIDA WANG ◽  
ZAN CHEN ◽  
...  

When performing anterolateral foraminotomy for the treatment of cervical spondylotic radiculopathy, the extent of uncinate process resection affects the stability of the cervical spine. The aim of this study was to determine the stability of the cervical spine after resection of various amounts of the uncinate process. Based on computed tomography (CT) scans of an adult male volunteer, a three-dimensional geometric model of the cervical spine (C4-C6) was established using Mimics 13.1, SolidWorks 2012, and ANSYS 15.0 software packages. Next, the mechanical parameters of the tissues were assigned according to their different material characteristics. Using the tetrahedral mesh method, a three-dimensional finite element model of the cervical spine was then established. In modeling uncinated process resection, two excision protocols were compared. The first excision protocol, protocol A, mimicked the extent of resection used in current clinical surgical practice. The second excision protocol, protocol B, employed an optimal resection extent as predicted by the finite element model. Protocols A and B were then used to resect the left uncinate process of the C5 vertebra to either 50% or 60% of the total height of the uncinate process. The stability of the cervical spine was assessed by evaluating values of deformation and maximum equivalent stress during extension, flexion, lateral bending, and rotation. After protocol A resection, the total deformation was increased as was the maximum equivalent stress during left and right rotation. After protocol B resection, the total deformation was little changed and the maximum equivalent stress was visibly decreased during left and right rotation. As evidenced by these results, protocol B resection had relatively little effect on the stability of the cervical spine, suggesting that resection utilizing the limits proposed in protocol B appears to better maintain the stability of the cervical spine when compared with current clinical surgical practice as replicated in protocol A.


2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Ying Wu ◽  
Yuan Zhang ◽  
Sixi Zha ◽  
Guojin Qin

Abstract Due to the combined effects of natural and human factors, the ground subsidence is aggravated, which brings potential hazards to the normal operation of buried polyethylene (PE) pipelines. A variety of variables influences the safety of buried pipelines, while the existing research lacks detailed analysis on the issue. A finite element model of buried PE pipeline was developed to analyze how various factors affected the strength of PE pipeline under ground subsidence. Furthermore, the orthogonal test combined with the gray correlation degree was used to analyze the significance of each influencing factor. The results show that (1) the strain rate of the pipe is different at different ground subsidence rates, and the maximum equivalent stress of the pipe increases with the increase of the strain rate; (2) the maximum equivalent stress diminishes with the increasing wall thickness of the pipeline and the length of the transition section; and (3) the factor that has the most significant influence on the maximum equivalent stress of the pipeline is the settlement, followed by the strain rate and the length of the transition section. The internal pressure has the least influence on the maximum equivalent stress in the context of ground subsidence induced stresses.


2013 ◽  
Vol 353-356 ◽  
pp. 3312-3315
Author(s):  
Fan Gu ◽  
Tao Gao Wu ◽  
Wei Jian Zhao ◽  
Xin Dui

According to the actual structure of grouting sleeve, the ABAQUS finite element model of grouting-sleeve reinforcement-connection component under axial tension load was established, and the stress distribution at reinforcement, grouting material and sleeve were gotten. Numerical simulation shows that the compressive cones in grouting material are formed to transfer load between reinforcement and sleeve. Moreover, simulation indicates that mechanical property of grouting material is the most important factor for the physical reliability of reinforcement connection.


Author(s):  
Bisen Lin ◽  
Richard C. Biel

In this paper, a rational stress limit based on the von Mises equivalent stress is established for pipelines subjected to internal pressure. This stress limit is based on the ASME pipeline Code’s design margin for the service and location of the installation [1, 2]. These Codes are recognized by 49 CRF192 [5]. Both capped-end and open end conditions are considered. The single value of stress limits can be derived by classical hand calculations for use in assessing the results of a finite element analysis (FEA). Two application examples are presented showing studies done with the ABAQUS [3], a commercial (FEA) software. A stress limit was first found using classical hand calculations and verified by a simple finite element model. The linearized stresses at some critical locations were then compared to the established stress limit, and multiples, for the assessments of membrane, membrane plus bending, etc. stresses. This paper is not intended to revise or replace any provision of ASME B31.8 [2]. Instead, it provides a rational stress limit that may be used in the assessment of detailed FEA analyses of pipelines and the associated components.


2011 ◽  
Vol 675-677 ◽  
pp. 263-266
Author(s):  
Ke Zhang ◽  
Ju Ping Ren ◽  
Guo Zhi Liu ◽  
Yu Lan Tang ◽  
Yu Hou Wu

A 3D model of molecular dynamics for nanoceramic SiC is adopted to simulate the hot pressing sintering and preparation process of SiC, and mechanical properties such as density, hardness and elastic modulus are calculated. Finite element model of indentation is established based on the mechanical performance parameters from MD simulation. Conical indenter is adopted in indentation simulation. The FEM simulation results show that: Maximum equivalent stress appears at the place of indenter tip, and equivalent stress curves are appeared hemispherical. As indentation depth increases, the stress increased. As the distance of away from the indenter increases, the displacement in equivalent displacement nephogram gradually decreased until zero. During unloading process, elastic restitution is occurred. The elastic restitution in the area of below the indenter is obviously. Residual stress in the center of indentation is maximal after unloading.


2011 ◽  
Vol 2-3 ◽  
pp. 932-935 ◽  
Author(s):  
Bo Ping Wang ◽  
Jiao Wang ◽  
Xing Zhan Li ◽  
Qing Kai Han

The contact problem between root-blade and slot-disk structure of compressor is of much importance, because there is serious stress concentration in the structure, which is one of the parts with multi faults in aero-engine. First, finite element model for dovetail attachment is established to analyze stress concentration effects. Then, the stress distribution and other parameters such as contact pressure is obtained through contact analysis. In this paper, the finite element method based on contact analysis is used. Calculating results show that equivalent stress, contact pressure of blade-disk structure increase steadily as the rotating speed increases.


Sign in / Sign up

Export Citation Format

Share Document