Effect of Hydrogen Dilution on Properties of Microcrystalline Silicon Thin Films Prepared by VHF-PECVD

2013 ◽  
Vol 652-654 ◽  
pp. 1739-1742
Author(s):  
Xia Wu ◽  
Long Gu ◽  
Ji Sen Zhang ◽  
Hui Dong Yang

Microcrystalline silicon thin films were deposited on glass substrates by VHF-PECVD varying the ratio of hydrogen dilution from 88% to 98%. The structural characteristics, deposition rate and photosensitivity of the films were investigated. With the improvement of the hydrogen dilution ratio, crystallization rate of the films had been improved which was much more stable than amorphous silicon that the films transmit from amorphous silicon to microcrystalline silicon. However the deposition rate had been reduced with the increase of the hydrogen dilution and the highest deposition rate was 0.43nm/s. The samples showed a downward trend of photosensitivity with optical and dark conductivity both decreasing first then increasing. Thus suitable hydrogen dilution ratio should be chosen according to the different needs in preparation of microcrystalline silicon film.

2011 ◽  
Vol 317-319 ◽  
pp. 341-344
Author(s):  
Long Gu ◽  
Hui Dong Yang ◽  
Bo Huang

Amorphous Silicon-germanium films were prepared by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on glass substrates. The structural characteristics, deposition rate, photosensitivity, and optical band gap of the silicon-germanium thin films were investigated with plasma power varying from 15W to 45W. The deposition rate increased within a certain range of plasma power. With the plasma power increasing, the photosensitivity of the thin films decreased. It is evident that varying the plasma power changes the deposition rate, photosensitivity, which was fundamentally crucial for the fabrication of a-Si/a-SiGe/a-SiGe stacked solar cells. For our deposition system, the most optimization value was 30-35W.


1996 ◽  
Vol 441 ◽  
Author(s):  
Byung-Il Lee ◽  
Kwang-Ho Kim ◽  
Won-Cheol Jeong ◽  
Pyung-Su Ahn ◽  
Jin-Wook Shin ◽  
...  

AbstractBasic mechanisms for both Ni- and Pd-metal induced lateral crystallization (MILC) are investigated. For both cases, tiny silicides were formed under the metal deposited area, and propagated toward amorphous Si films leaving crystallized Si behind at temperatures as low as 500 °C. Ni-MILC was influenced by Pd such that the lateral crystallization rate was enhanced, and the temperature for the lateral crystallization was lowered to 450 °C. Through TEM analysis and external stress experiments, it was found that the enhancement of the lateral crystallization rate was closely related to the compressive stress generated by the formation of nearby Pd2Si.


2013 ◽  
Vol 178 (9) ◽  
pp. 691-694 ◽  
Author(s):  
S. Michard ◽  
M. Meier ◽  
B. Grootoonk ◽  
O. Astakhov ◽  
A. Gordijn ◽  
...  

Optik ◽  
2019 ◽  
Vol 180 ◽  
pp. 104-112 ◽  
Author(s):  
Xinli Li ◽  
Ruimin Jin ◽  
Lihua Li ◽  
Jingxiao Lu ◽  
Yongjun Gu ◽  
...  

2006 ◽  
Vol 511-512 ◽  
pp. 280-284 ◽  
Author(s):  
G. Ambrosone ◽  
U. Coscia ◽  
S. Lettieri ◽  
P. Maddalena ◽  
M. Ambrico ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
H.R. Moutinho ◽  
C.-S. Jiang ◽  
B. Nelson ◽  
Y. Xu ◽  
J. Perkins ◽  
...  

AbstractWe have studied the influence of substrate temperature and hydrogen dilution ratio on the properties of silicon thin films deposited on single-crystal silicon and glass substrates. We varied the initial substrate temperature from 200° to 400°C and the dilution ratio from 10 to 100. We also studied the effectiveness of the use of a seed layer to increase the crystallinity of the films. The films were analyzed by atomic force microscopy, X-ray diffraction, Raman spectroscopy, and transmission and scanning electron microscopy. We found that as the dilution ratio is increased, the films go from amorphous, to a mixture of amorphous and crystalline, to nanocrystalline. The effect of substrate temperature is to increase the amount of crystallinity in the film for a given dilution ratio. We found that the use of a seed layer has limited effects and is important only for low values of dilution ratio and substrate temperature, when the films have large amounts of the amorphous phase.


1992 ◽  
Vol 283 ◽  
Author(s):  
L. Lusson ◽  
P. Elkaim ◽  
M. Cuniot ◽  
D. Ballutaud ◽  
R. Rizk ◽  
...  

ABSTRACTSuccessive deuterium diffusion and effusion experiments are performed on undoped microcrystalline silicon obtained from thermally crystallized sputtered amorphous silicon thin films. The effect of prior incorporation of deuterium during the amorphous film growth on the crystallization mechanism and on the microcrystalline film quality is probed by the use of the post hydrogenation procedure. In connection with the deuterium solubility as provided by secondary ion mass spectroscopy (SIMS) profiling, the analysis of the effusion spectra suggests the existence of large cavities in the crystallized a-Si:D films, containing most probably molecular hydrogen. They are absent in the corresponding crystallized non-deuterated a-Si films. Other deuterium configurations seem to be present in both kinds of samples such as weakly bonded deuterium in small clusters and at grain boundaries.


2014 ◽  
Vol 92 (7/8) ◽  
pp. 768-773 ◽  
Author(s):  
Mehmet Günes ◽  
Hamza Cansever ◽  
Gökhan Yilmaz ◽  
Muzaffer H. Sagban ◽  
Vladimir Smirnov ◽  
...  

Metastability effects because of atmospheric exposure, high purity gasses, and deionized water in hydrogenated microcrystalline silicon thin films with different crystalline volume fractions were studied using well accepted steady-state characterization methods of dark conductivity, steady-state photoconductivity, steady-state photocarrier grating (SSPG) and dual beam photoconductivity (DBP) methods. A standard measurement procedure has been established before using the steady state methods, in which a steady state condition of dark conductivity was established by monitoring the time dependence of dark conductivity. Samples deposited on smooth glass and rough glass substrates exhibit similar reversible and irreversible changes in the properties of microcrystalline silicon film. A reliable correlation of reversible and irreversible changes indicate that dark conductivity and photoconductivity values increase, sub-bandgap absorption spectrum obtained from DBP method decrease and correspondingly minority carrier diffusion lengths obtained from the SSPG method increase in the metastable state in various amount for microcrystalline films with crystalline volume fraction, [Formula: see text] > 0.30. Amorphous silicon and microcrystalline silicon films with [Formula: see text] < 0.30 do not show detectable metastable changes as samples exposed to atmospheric condition as well as high purity oxygen gas and deionized water.


Sign in / Sign up

Export Citation Format

Share Document