Numerical Simulation of Single Metal Progressive Cavity Pump

2013 ◽  
Vol 655-657 ◽  
pp. 372-375
Author(s):  
Xian Jun Zhou ◽  
Zhao Sheng Feng

The motion law of single metal progressive cavity pump was studied through motion simulation. Then, the finite element analysis software ANSYS was used to analyze the distribution characteristics and the influencing factors of the contact pressure. It was pointed out that the single metal progressive cavity pump has the ability to withstand high temperature and the differential pressure mainly influences the wear. At last the reasonable range of the clearance was given.

2013 ◽  
Vol 313-314 ◽  
pp. 1038-1041
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Chao Li

According to uncertainty of the design parameters for large span truss of installing wave-maker, in order to avoid the waste of materials,the truss is analyzed based on the finite element analysis software ANSYS to find out its weaknesses and various parts of the deformation. On the premise of ensuring the intensity and stiffness, the weight of the truss is reduced by adjusting its sizes and selecting different profiles, so as to achieve the optimization of the truss of installing wave-maker.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 202
Author(s):  
Gui Li ◽  
Xiaoyu Long

Advanced high strength galvanized steel sheet has been one of the dominant materials of modern automotive panels because of its outstanding mechanical properties and corrosion resistance. The zinc coating thickness of hot dip galvanized steel sheet is only about 10–20 μm, which is a discarded object on the macro level. However, it is obvious to damage and impact on stamping performance. Therefore, this paper takes zinc coating as the research object and builds its mechanical constitutive model based on a nano-indentation test and dimensional analysis theory. We separated the zinc coating from the galvanized steel substrate and constructed a sandwich material model by introducing a cohesive layer to connect the zinc coating and the steel substrate. We obtained the interface binding energy between the zinc coating and the steel substrate through the nano-scratch test. The accuracy of the model is verified by the finite element analysis of hemispherical parts. We used the five-layers element model with 0 thickness cohesive layer to simulate the zinc coating damage of galvanized steel sheet. The hemispherical part drawing experiment is used to verify the feasibility of the finite element analysis results. The results demonstrate that it is more accurate to consider the finite element numerical simulation of the zinc coating, introducing the cohesive element to simulate damage between the coating and the substrate. Drawing depth, stamping force, and the strain of the numerical simulation are closer to the experimental results.


2011 ◽  
Vol 52-54 ◽  
pp. 1147-1152
Author(s):  
Guang Guo Zhang ◽  
Wei Jiang ◽  
Hong Hua Zhang ◽  
Huan Wang

In the traditional designs of milling cutter, we cannot get the required accuracy of machining as there may be local deformation on the edges, even more the cutter can break down. Aiming at this situation, a finite-element model of straight pin milling cutter with helical tooth are built using Marc, a nonlinear finite-element analysis software, the different cutting forces of the milling cutter during the cutting process are analyzed and the cutting forces of the milling cutter at different parameters are studied. We get the stress, the strain and the temperature distribution of the milling cutter in different situation. Our work offer a theoretical basis of improving stress of the cutter, designing the structure of cutters reasonably and analyzing the cutter failure as well as a new method of analysis and calculation of the cutter life and strength.


2012 ◽  
Vol 201-202 ◽  
pp. 907-911 ◽  
Author(s):  
Feng Yi Feng ◽  
Yu Guo Cui ◽  
Fei Xue ◽  
Liang En Wu

Based on the requirements of that the finger can move in parallel, and the displacement of the finger can be detected, the micro-gripper driven by piezoelectric actuator is designed based on the displacement amplification structure with the flexure hinge. The static analysis, the modal analysis, the harmonic response analysis and the transient response analysis of the micro-gripper are carried out by using the finite element analysis software ANSYS. The results of the finite element analysis show that the finger is fully able to move in parallel, and can detect the displacement of the finger; the maximum displacement of the finger is about 101 μm, the first natural frequency is about 130 Hz; the finger tip displacement under the 1 μm step input is about 20 μm, the fingertip vibration is about ±2 μm.


2011 ◽  
Vol 368-373 ◽  
pp. 1125-1129
Author(s):  
Chang Jiang Liu ◽  
Jin Long Wang

The finite element model about greenhouse canopy of seismic analysis was setted up, The finite element analysis software ANSYS was used to study structure displacement, stress analysis on greenhouse shed. The results showed that the dangerous part of the canopy were located on upper chord members,lower chord members, web members of the framework and the lower and upper, the inside of both sides of the wall with seismic load.Corresponding to this results ,the main destroied form were the framework damage caused by the bending deformation of upper chord members, lower chord members and the upper web members and the unstability caused by the distortion of both sides of the wall.


2012 ◽  
Vol 271-272 ◽  
pp. 883-886
Author(s):  
Feng Ji Chang ◽  
Yu Jun Li ◽  
Dong Yan ◽  
Hai Bo Sun ◽  
Yu Bin Wu ◽  
...  

According to the usage of vehicle radar antenna pedestal connection plate, this article analyzes and compares the structure characteristic of welding and casting. We decide to adopt the casting structure and use cast aluminium ZL101A. Based on the connection plate of using conditions, we analyze the deformation and stress of connection plate by the finite element analysis software. The design is in line with the material allowable requirements and to meet the requirements of the system stiffness.


2011 ◽  
Vol 422 ◽  
pp. 842-845
Author(s):  
Xue Ping Wang ◽  
Ying Zhang ◽  
Pan Li ◽  
Zhen Wei Zhang

This paper primarily simulates the heat exchange part’s stress and strain situation under the load of temperature and gravity and their coupling impact aiming at obtaining the stress and deformation distribution. The authors took advantage of the method of the finite element analysis to study the stress and strain situation. Through the analysis, each part of the transfer’s stress and strain can be calculated. The conclusion of this paper provides the basis for the further enhancement of the machine life and optimization of the structure design.


2011 ◽  
Vol 311-313 ◽  
pp. 906-909 ◽  
Author(s):  
Jing Pei Xie ◽  
Ai Qin Wang ◽  
Wen Yan Wang ◽  
Ji Wen Li ◽  
Di Xin Yang ◽  
...  

The influences of non-metallic inclusions on the quality and properties of the steel not only depended on the quantity of inclusions, but also on the type、shape、size、deformation behavior and distribution condition. By means of ANSYS finite element analysis software, the stress field distribution in the inclusions and the matrix around the inclusions are analyzed under the condition of different kinds of types、shapes、distributions with changeable load in heavy rudder arm steel castings, then micromechanics behavior of inclusions is investigated from angle of macro mechanics.


2013 ◽  
Vol 744 ◽  
pp. 205-210 ◽  
Author(s):  
De Zheng Liu ◽  
Qiang Xu ◽  
Zhong Yu Lu ◽  
Dong Lai Xu ◽  
Feng Tan

The preliminary validation of in-house finite element analysis software for creep damage mechanics is reported. The Finite Element Analysis Method and the programme strcuture for creep damage problem were reported elsewhere and the validation conducted so far include plane stress, plane strain, and axisymmetric cases. Furture work is also outlined.


Sign in / Sign up

Export Citation Format

Share Document