Modeling and Simulation of the Marine Permanent Magnet Synchronous Propulsion Motor with Direct Torque Control System

2013 ◽  
Vol 655-657 ◽  
pp. 612-619
Author(s):  
Chun Lai Zhang ◽  
Jin Nan Zhang

New quick-response and high efficiency direct torque control method of Permanent magnet synchronous motor is proposed. The new method is realized by optimizing the switching frequency of the inverter and choosing the most fit voltage space vectors. Modeling and simulating such marine electric propulsion system using Matlab/Simulink is performed. The starting-up and dynamic simulation results prove that this method can be fully used onboard the future all electric ship.

2013 ◽  
Vol 712-715 ◽  
pp. 2757-2760
Author(s):  
Jun Li Zhang ◽  
Yu Ren Li ◽  
Long Fei Fu ◽  
Fan Gao

In order to deeply understand the characteristics of the permanent magnet synchronous motor direct torque control method, its mathematical models were established in the two-phase stationary coordinate system, the two-phase synchronous rotating coordinate system, and x-y stator synchronous rotating coordinate system. The implementation process of direct torque control method in varied stator winding connection was analyzed in detail. In order to improve the speed and torque performance of the permanent magnet synchronous motor, the direct torque control block diagram and the space voltage vector selection table were given. Finally, the summary and outlook of reducing torque ripple in the permanent magnet synchronous motor direct torque control methods.


Author(s):  
Xiaoxin Hou ◽  
Mingqian Wang ◽  
Guodong You ◽  
Jinming Pan ◽  
Xiating Xu ◽  
...  

The traditional direct torque control system of permanent magnet synchronous motor has many problems, such as large torque ripple and variable switching frequency. In order to improve the dynamic and static performance of the control system, a new torque control idea and speed sensorless control scheme are proposed in this paper. First, by deriving the equation of torque change rate, an improved torque controller is designed to replace the torque hysteresis controller of the traditional direct torque control. The improved direct torque control strategy can significantly reduce the torque ripple and keep the switching frequency constant. Then, based on the improved direct torque control and considering the sensitivity of the stator resistance to temperature change, a speed estimator based on the model reference adaptive method is designed. This method realizes the stator resistance on-line identification and further improves the control precision of the system. The performance of the traditional direct torque control and the improved direct torque control are compared by simulation and experiment under different operating conditions. The simulation and experimental results are presented to support the validity and effectiveness of the proposed method.


2013 ◽  
Vol 341-342 ◽  
pp. 1013-1017
Author(s):  
Yi Ming Li ◽  
Wei Huang ◽  
Peng Jin ◽  
Jun Rong

According to the analysis of mathematical model for permanent magnet synchronous motor (PMSM), direct torque control(DTC) technology is introduced to the control system of PMSM. The paper builds dual-closed loop control system of PMSM, and the outer loop is speed loop, the inner loop is flux and torque loop, at the same time, the paper makes simulation in Matlab/Simulink. The simulation results show that the DTC technology significantly improves the dynamic performances of PMSM, and the control system is no overshoot, and has small flux response comparing with the conventional control methods of PMSM. So the application of DTC technology in PMSM provides a new thoughtful way for PMSM control system designing and debugging in actual application.


2013 ◽  
Vol 756-759 ◽  
pp. 627-631
Author(s):  
Zhao Jun Meng ◽  
Rui Chen ◽  
Yue Jun An

The position sensorless control method based on direct torque control was carried out aiming at the interior permanent magnet synchronous motor (IPMSM) in this paper. To the consideration of electric vehicle space is limited, in order to reduce the controller size to save space, this paper studied the sensorless control. Meanwhile, in order to improve the control rapidity as much as possible of the electric vehicle, take direct torque control as a control method of the driving motor. Finally, designed the sensorless direct torque controller and studied its simulation. Simulation results show that the control system have good dynamic and static characteristics in the full speed range.


Author(s):  
Fadila TAHIRI ◽  
Fatiha BEKRAOUI ◽  
Ibrahim BOUSSAID ◽  
Omar OULEDALI ◽  
Abdelkader HARROUZ

This article is part of the study of the Predictive Vector PWM-based Couple Direct Control (DTC-SVM-predictive) of a permanent magnet synchronous motor (PMSM) powered by a photovoltaic (PV) source. The Direct Torque Control (DTC-SVM-Predictive) where the control of the switching frequency is well controlled and therefore the ripples are weakened at the torque and flux levels.


2011 ◽  
Vol 383-390 ◽  
pp. 2628-2635
Author(s):  
Yu Ying Gao ◽  
Ming Ji Liu ◽  
De Ping Kong ◽  
Yun Gao Li

Direct torque control (DTC) has been widely used due to its advantages of less parameter dependence and faster torque response. However, in conventional DTC, there are obvious torque and flux ripples. This paper studies the influence of zero space voltage vectors on DTC system of permanent magnet synchronous motor (PMSM). The control model is established with Matlab/Simulink software. The simulation results show that the ripple torque can be reduced significantly when zero space voltage vectors are used. Meanwhile, the use of zero space voltage vectors can evidently decrease the switching frequency of the power switches as well as the switching loss. The achievements in this paper can provide a reference to improve DTC performance of PMSM.


2014 ◽  
Vol 672-674 ◽  
pp. 1234-1237
Author(s):  
Wen Zhuo Chen ◽  
Xiao Yu Zhang ◽  
Xiao Mei Sui

This template illustrates the control system of permanent magnet synchronous motor(PMSM) which uses field oriented vector control(field oriented vector control). PMSM is a complex, strong coupling and nonlinear system. And field oriented vector control could provide good performance as well as the PI controller setted with well parameter matching. Whereas limited by the number of voltage vector, the other control method of PMSM, direct torque control, could not satisfy accurate control when the machine running with a low speed. So modulation of the whole system is built here to realize closed-loop field oriented vector control control by keeping id=0 , and the machine model and the transformation among different coordinate system are discussed. The system is verified effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document